Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

HIV gets a makeover: A few adjustments to the AIDS virus could alter the course of research

12.10.2006
The slow pace of AIDS research can be pinned, in no small part, on something akin to the square-peg-round-hole conundrum. The HIV-1 virus won’t replicate in monkey cells, so researchers use a monkey virus — known as SIVmac, or the macaque version of simian immunodeficiency virus — to test potential therapies and vaccines in animals.

But therapies and vaccines that are effective on SIV don’t necessarily translate into human success. Now, using a combination of genetic engineering and forced adaptation, researchers at Rockefeller and the Aaron Diamond AIDS Research Center have created a version of the AIDS virus that replicates vigorously in both human and monkey cells — an advance that has the potential to revolutionize vaccine research.

In a paper published in today’s issue of Science, Paul Bieniasz, associate professor and head of the Laboratory of Retrovirology, describes how he and his colleagues maneuvered around the intrinsic immunity of primate cells by replacing just a few parts of the human virus — the ones responsible for blocking replication in monkey cells — with components from SIV. “Overall, the virus is a mixture of engineering and forced evolution,” Bieniasz says. “It sounds simple, in theory, but it took us two years to do.”

Bieniasz and Theodora Hatziioannou, a research scientist in the lab and the paper’s first author, had to overcome two major obstacles: the first was a protein called TRIM5 that, in monkeys, recognizes the outer shell or “capsid” of HIV-1 but not that of SIV. By swapping out the capsid region of the HIV-1 genome for that of the monkey virus, and then selectively growing the viruses that replicated most robustly, over several generations Hatziioannou created an HIV-1 mutant that could evade the monkey cells’ TRIM5 recognition.

... more about:
»Aids »HIV »HIV-1 »SIV »Vaccine

Another bit of engineering was required to get around the second obstacle: APOBEC proteins produced by a host normally cause invading viruses to mutate so much that they can’t survive, but HIV-1 uses a protein called Vif to destroy APOBEC and prevent the attack. Monkey APOBEC proteins, however, aren’t susceptible to the human virus’s Vif. So Hatziioannou did another swap — the SIV Vif gene for the HIV one — and then another round of forced adaptation to create viruses that would multiply with vigor.

The researchers dubbed their end result simian tropic HIV (stHIV): a form of HIV-1 that only differs from the original by about 10 percent, but can effectively infect primate cells and be used to test potential therapies. “If we can make this virus work in animals the way it works in tissue culture, it will likely change the way that AIDS vaccine and therapeutics research is done,” Bieniasz says.

Kristine Kelly | EurekAlert!
Further information:
http://www.rockefeller.edu
http://newswire.rockefeller.edu/?page=engine&id=537

Further reports about: Aids HIV HIV-1 SIV Vaccine

More articles from Life Sciences:

nachricht First study on physical properties of giant cancer cells may inform new treatments
14.08.2018 | Brown University

nachricht Tiny Helpers that Clean Cells
14.08.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

Tiny Helpers that Clean Cells

14.08.2018 | Life Sciences

Algorithm provides early warning system for tracking groundwater contamination

14.08.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>