Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An intelligent combination of mathematics and cell biology could spell death to brain tumours

23.01.2002


Combining two separate observations of cells in brain tumours could enable doctors to improve the success rate of radiotherapy. Speaking today (23 January) at the Institute of Physics Simulation and Modelling Applied to Medicine conference in London, chemical engineer Dr Norman Kirkby from the University of Surrey will explain how using the correct time intervals between a sequence of low dose radiotherapy sessions could increase the chance of curing brain cancers that tend to resist treatment.



The work started with the discovery that there is a class of brain cancers (gliomas) that are susceptible to low doses of radiation, but can resist high doses. These cancers can occur in children as well as adults. They are difficult to treat because they do not form solid lumps that can be removed by surgery. Instead they spread in a diffuse manner through the brain.

The question was, would it be possible to find a way of getting the most benefit from giving multiple sessions of low-dose therapy? A team of chemical engineers, cell biologists and clinicians, drawn from the University of Surrey, Addenbrooke’s Hospital in Cambridge and The Gray Cancer Institute at Mount Vernon Hospital in Middlesex, came together to see if they could make some accurate predictions.


Kirkby and colleagues built a mathematical model that described the biology of cancer, and the effect that radiation has on it. Tumours grow when a number of cells multiply. For this to occur, cells take part in a cycle of activity, in which they first produce new copies of the genetic information, then check that the copies have no errors, before finally splitting the cell into two. During the checking phase of the cell cycle they also repair any errors in the genetic code.

Radiotherapy works by damaging each cell’s DNA. But if the therapy is given when cells are in the repair phase of their cycle, they will simply sort out the damage and carry on growing.

The new mathematical model is enabling the team to calculate the best time intervals to leave between doses of radiation, so that the maximum number of cells are caught at a time when they can’t repair the damage. It suggests that a patient should receive small doses at fairly precise times, several times a day. This is new. Standard systems of treatment give larger doses with intervals of a few days.

“The model is convincing, but the challenge will be to find ways of fitting this treatment schedule into the diaries of a working radiotherapy department,” says cancer expert Dr Neil Burnet.

Team member Dr Susan Short hopes that giving low doses of treatment at optimum time intervals will mean that they can destroy the cancer cells in people’s brains without causing excessive damage to the normal brain tissue.



Liezel Tipper | alphagalileo

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>