Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pheromone from mother's milk may rapidly promote learning in newborn mammals

11.10.2006
By studying the ability of newborn rabbit pups to learn the significance of new odors, researchers have found that a mammary pheromone secreted in mother's milk may act as a chemical booster that facilitates the ability of pups to quickly associate environmental odors with the opportunity to nurse.

The findings, which deepen our understanding of pheromone function and how learning occurs in the earliest days of life, are reported in the October 10th issue of the journal Current Biology, published by Cell Press, by a team including Gérard Coureaud and Anne-Sophie Moncomble and colleagues from the Centre Européen des Sciences du Goût in Dijon, which is supported by the Centre National de la Recherche Scientifique, and the Université de Bourgogne and Inra. Benoist Schaal, another author of the study, is the director of the Centre Européen des Sciences du Goût.

Newborn mammals are highly dependent on their mother's milk for survival, and they typically exhibit a defined sequence of actions when searching for milk. This searching behavior rapidly becomes increasingly directed, showing that mammalian newborns are efficient learners. Past studies of this very early learning in the European rabbit (Oryctolagus cuniculus) have shown that newborn pups engage in typical food-searching movements in response to olfactory signals that include the mammary pheromone secreted in mother's milk. The ability of newborns to rapidly improve their milk-finding skills likely involves learning that "new" odors--for example, those from the mother's abdomen, or of milk itself--are associated with food.

In the new work, the researchers investigated whether the mammary pheromone plays a role in the ability of newborns to learn to associate other odors with the availability of milk. By presenting newborns with the pheromone in combination with an otherwise "neutral" odor and subsequently testing whether the neutral odor alone would later elicit the typical food-searching behavior in the pups, the researchers were able to show that the pheromone is indeed effective at promoting the ability of the newborns to learn the significance of new odors. The researchers showed that this pheromone-induced learning is efficient from the time of birth and is capable of promoting the learning of successive different odorants presented to newborn pups.

... more about:
»Pheromone »Rapidly »ability »mammary »newborn »odor

Given its ability to promote the learning of new olfactory cues, the mammary pheromone may act as a kind of organizing signal that boosts the brain's ability to associate new odors with milk availability. This would in turn facilitate an essential skill: the ability of newborn pups to rapidly hone their suckling instincts during the first days of life.

Heidi Hardman | EurekAlert!
Further information:
http://www.current-biology.com

Further reports about: Pheromone Rapidly ability mammary newborn odor

More articles from Life Sciences:

nachricht 'Flamenco dancing' molecule could lead to better-protecting sunscreen
18.10.2019 | University of Warwick

nachricht Synthetic cells make long-distance calls
17.10.2019 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Energy Flow in the Nano Range

18.10.2019 | Power and Electrical Engineering

MR-compatible Ultrasound System for the Therapeutic Application of Ultrasound

18.10.2019 | Medical Engineering

Double layer of graphene helps to control spin currents

18.10.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>