Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More than meets the eye

10.10.2006
Ever watch a jittery video made with a hand-held camera that made you almost ill? With our eyes constantly darting back and forth and our body hardly ever holding still, that is exactly what our brain is faced with. Yet despite the shaky video stream, we usually perceive our environment as perfectly stable.

Not only does the brain find a way to compensate for our constantly flickering gaze, but researchers at the Salk Institute for Biological Studies have found that it actually turns the tables and relies on eye movements to recognize partially hidden or moving objects. Their findings will be published in a forthcoming issue of Nature Neuroscience.

"You might expect that if you move your eyes, your perception of objects might get degraded," explains senior author Richard Krauzlis, Ph.D., an associate professor in the Systems Neurobiology Laboratory at the Salk Institute. "The striking thing is that moving your eyes can actually help resolve ambiguous visual inputs."

Our eyes move all the time, whether to follow a moving object or to scan our surroundings. On average, our eyes move several times a second – in fact, in a lifetime, our eyes move more often than our heart beats. "Nevertheless, you don't have the sense that the world has just swept across or rotated around you. You sense that the world is stable," says Krauzlis.

... more about:
»Hafed »Krauzlis »Video »Visual »eye movement »movements

Just like high-end video cameras, the brain relies on an internal image stabilization system to prevent our perception of the world from turning into a blurry mess. Explains lead author Ziad Hafed, Ph.D. "Obviously, the brain has found a solution. In addition to the jumpy video stream, the visual system constantly receives feedback about the eye movements that the brain is generating."

Hafed and Krauzlis took the question of how the brain is able to maintain perception under less than optimal circumstances one step further. "If you think of the video stream as a bunch of pixels coming in from the eyes, the real challenge for the visual system is to decide which pixels belong to which objects. We wondered whether information about eye movements is used by the brain to solve this difficult problem," says Hafed, who is an NSERC (Canada) and Sloan-Swartz post-doctoral researcher at the Salk Institute.

Krauzlis explains that the human brain recognizes objects in everyday circumstances because it is very good at filling in missing visual information. "When we see a deer partially hidden by tree trunks in a forest, we can still segment the visual scene and properly interpret the individual features and group them together into objects," he says.

However, even though recognizing that deer is effortless for us, it is not a trivial accomplishment for the brain. Teaching computers to recognize objects in real life situations has proven to be an almost insurmountable problem. Artificial intelligence researchers have spent much time and effort trying to design robots that can recognize objects in unconstrained situations, but so far, their success has been limited.

To determine whether eye movements actually help the brain recognize objects, Hafed and Krauzlis asked whether people perceived an object better when they actively moved their eyes or when they stared at a given point in space. Human subjects watched a short video that allowed them to glimpse a partially hidden chevron shape that moved in a circle.

When they kept their eyes still by fixating on a stationary spot, observers perceived only random lines moving up and down. But when they moved their eyes such that the input video streams through them were unaltered, viewers easily recognized the lines as a circling chevron.

"It turns out that eye movements not only help with image stabilization, but that this additional input also plays a fairly important role for the perception of objects in the face of all the challenges that real life visual scenes pose – that objects are obscured or are moving, and so on," says Hafed.

Gina Kirchweger | EurekAlert!
Further information:
http://www.salk.edu

Further reports about: Hafed Krauzlis Video Visual eye movement movements

More articles from Life Sciences:

nachricht Seeing on the Quick: New Insights into Active Vision in the Brain
15.08.2018 | Eberhard Karls Universität Tübingen

nachricht New Approach to Treating Chronic Itch
15.08.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Interactive software tool makes complex mold design simple

16.08.2018 | Information Technology

Study tracks inner workings of the brain with new biosensor

16.08.2018 | Health and Medicine

Fraunhofer HHI develops next-generation quantum communications technology in the UNIQORN project

16.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>