Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify a key regulator for skin stem cells

09.10.2006
By turning on a single gene, researchers can prevent skin stem cells from maturing into the three types of adult skin cells -- epidermal, sebaceous and hair cells. They say this finding could have important implications for scientists trying to grow stem cells in the lab, for both research and potential therapies.

As researchers seek ways to manipulate stem cells, which have the ability to differentiate into multiple types of tissues, one challenge they face is maintaining the stem cells in their immature state. The newly identified repressor switch could provide part of the answer.

Led by Howard Hughes Medical Institute investigator Elaine Fuchs, the researchers published discovery of this regulator, known as Tcf3, in an article in the October 6, 2006, issue of the journal Cell. Other co-authors on the paper include Hoang Nguyen and Michael Rendl in the Fuchs laboratory at The Rockefeller University.

Tcf3 is a transcription factor, a protein that controls the activity of a collection of genes in order to coordinate their action. In earlier studies, Fuchs and her colleagues had found that the gene for Tcf3 is activated in a region of the adult hair follicle called the bulge, where stem cells are expected to be. They also knew from studies in other laboratories that a relative of Tcf3, called Tcf4, appears to be important for the development of the intestine.

... more about:
»Embryonic »Tcf3 »follicle

The researchers reasoned that if Tcf3 plays a role in maintaining adult follicle cells, it would also be present in embryonic skin, which consists mainly of stem cells. When they analyzed the epidermis of embryonic mice, they found that theTcf3 gene was, indeed, active in the embryonic skin stem cells.

The researchers next sought to pinpoint which genes Tcf3 controls. They genetically engineered a mouse in which they could switch the Tcf3 gene on at will in skin cells. They then used DNA microarrays to analyze which genes were affected when Tcf3 was activated. Microarrays, also known as "gene chips," enable scientists to determine the activity of thousands of genes at once.

"When we compared the list of genes that Tcf3 repressed or induced, we found that it was very similar to the genes expressed when the skin is embryonic," said Nguyen. "So, by turning on Tcf3, we were essentially reverting the postnatal skin cells to be more similar to embryonic skin cells. The genetic program induced by Tcf3 is also very similar to that seen in bulge cells, where adult stem cells are thought to reside," she said.

In particular, the researchers found that Tcf3 repressed members of a gene family called PPAR, which themselves produce key transcription factors that promote skin stem cells to differentiate into epidermal and sebaceous gland cells.

The biggest surprise, said Fuchs, came when the researchers analyzed how switching on Tcf3 affected the differentiation of embryonic skin stem cells. They found that activating the gene in mice blocked differentiation of all three types of mature skin cells -- epidermal, sebaceous, and hair follicle. "We've known for some time that Tcf3 can operate with a co-factor called â-catenin and initiate skin stem cells to make hair follicles. But we hadn't realized that Tcf3 could act on its own to keep skin stem cells in an undifferentiated state," Fuchs explained. â-Catenin is stabilized in response to Wnt signaling, which Fuchs' team earlier showed plays a key role in the ability of stem cells to make hair.

Fuchs said that Wnt signaling has been shown to play a role in many different types of stem cells in the body. The discovery that one of â-catenin's partners, Tcf3, can repress genes in the absence of a Wnt signal may be important in understanding how these transcription factors work in stem cells. In further studies, Fuchs and her colleagues plan to study in more detail how Tcf proteins govern stem cell biology.

Jennifer Michalowski | EurekAlert!
Further information:
http://www.hhmi.org

Further reports about: Embryonic Tcf3 follicle

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>