Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fruit fly study identifies gene mutation that regulates sensitivity to alcohol

06.10.2006
Researchers at the University of California, San Francisco (UCSF) have discovered a gene mutation in fruit flies that alters sensitivity to alcohol.

The findings, reported in the October 6 issue of the journal Cell, may have implications for human studies seeking to understand innate differences in people's tolerance for alcohol. The research was supported by the National Institute on Alcohol Abuse and Alcoholism (NIAAA) and the National Institute on Drug Abuse (NIDA) of the National Institutes of Health (NIH), part of the U.S. Department of Health and Human Services.

The study was authored by Adrian Rothenfluh, Ph.D., and colleagues in the laboratory of Ulrike Heberlein, Ph.D., at UCSF, in collaboration with researchers at the Ernest Gallo Clinic & Research Center. The scientists examined the behavior of fruit flies (Drosophila) exposed to alcohol. Ordinarily, at low doses of alcohol fruit flies increase their activity, while high doses have a sedative effect. However, the researchers found some fruit flies were much more resistant to alcohol sedation. These flies continued to move about much longer than typical fruit flies exposed to the same amount of alcohol. The scientists subsequently identified key differences in a particular gene associated with this behavior. The mutation also altered the flies' sensitivity to cocaine and nicotine as well. Because this gene variant affected the behavioral response to substances of abuse, the researchers dubbed it white rabbit--a reference to the title of a 1960s song about drug-induced changes.

"This study describes key molecular pathways and gene interactions that control alcohol sensitivity," said NIAAA Director Ting-Kai Li, M.D. "These significant clues about the fruit fly's behavioral response may translate into useful tools to advance the search for human genes involved in sensitivity to alcohol. Insights about sensitivity, or acute tolerance, are especially important because we know that people who are less sensitive to alcohol's impact are at greater risk for becoming alcohol dependent," he said.

... more about:
»Mutation »RhoGAP18B »alcohol »effect »sensitivity

The researchers exposed fruit flies to vaporized alcohol and monitored their behavior and motion patterns with sensitive tracking instruments. They isolated the flies that were less sensitive to alcohol's sedative effects. By breeding subsequent populations of mutant flies, the scientists identified the particular genetic mutation.

The researchers further showed that the white rabbit mutation disrupted the function of the RhoGAP18B gene. They also isolated a number of gene variants of RhoGAP18B, each of which had a distinctly different effect on the response to alcohol. Manipulating these genetic variants, the researchers generated flies with greater and lesser sensitivity to alcohol's sedative and stimulant effects.

The research team also detailed how signaling proteins encoded by the RhoGAP18B gene variants played an important role in reorganizing components of the adult fruit fly's central nervous system, which in turn affected the flies' behavior. Dr. Rothenfluh said the research team concluded that the RhoGAP18B gene is intimately involved in regulating behavioral responses to alcohol exposure.

The findings have implications for researchers seeking corresponding genes and molecular pathways in other animal models and humans. Antonio Noronha, Ph.D., director of NIAAA's Division of Neuroscience and Behavior, said, "If we can characterize similar genetic differences and neurobehavioral responses that underlie acute tolerance in humans, that could potentially provide new targets for the development of drugs to treat alcohol dependence."

Gregory Roa | EurekAlert!
Further information:
http://www.niaaa.nih.gov
http://www.nih.gov

Further reports about: Mutation RhoGAP18B alcohol effect sensitivity

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>