Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover misfolded protein clumps common to dementia, Lou Gehrig's disease

06.10.2006
Study provides new insights into neurological disorders

Scientists have identified a misfolded, or incorrectly formed, protein common to two devastating neurological diseases, frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS, also known as Lou Gehrig's disease), according to a report in the Oct. 6, 2006, issue of Science. The findings suggest that certain forms of FTD, ALS and possibly other neurological diseases might share a common pathological process.

Virginia Lee, Ph.D., and John Trojanowski, M.D., Ph.D., of the University of Pennsylvania, led an international team of scientists in this discovery. The work was funded by the National Institute on Aging (NIA), part of the National Institutes of Health (NIH), and was done at the NIA-funded Alzheimer's Disease Center at the University of Pennsylvania School of Medicine Institute on Aging.

"This exciting basic science discovery provides the first molecular link between a dementia--FTD--and a motor neuron disease--ALS. It will advance understanding of the pathological processes of FTD and ALS, and possibly of other neurological disorders," says NIA director Richard J. Hodes, M.D. Improved understanding of underlying disease processes is critically important in pointing researchers toward the development of therapies for FTD, ALS and other neurodegenerative diseases, Hodes and the study authors note.

FTD affects the frontal and temporal lobes of the brain. People with FTD may exhibit uninhibited and socially inappropriate behavior, changes in personality and, in late stages, loss of memory, motor skills and speech. After Alzheimer's disease, it is the most common cause of dementia in people under age 65.

ALS is a progressive disease of brain and spinal cord motor neurons that control movement. Over time, walking, eating, speaking and breathing become more difficult in this fatal disease. Some people with ALS also have FTD, and some with FTD also develop ALS, suggesting that common mechanisms might underlie these two diseases.

In certain neurodegenerative diseases, including ALS and some forms of FTD, scientists have identified clumps of protein--or inclusion bodies--that accumulate in brain cells and neurons. However, understanding why they form and what they contain has been elusive. Lee and Trojanowski have long sought to solve that mystery.

Following years of research, they have now identified TDP-43 as a constituent part of the clumps that form in ALS and in the most common form of FTD. Although its precise role is not well understood, TDP-43 is involved in the complex process of transcribing and regulating genetic information in the nucleus of the cell.

"There is much more to learn about how this nuclear protein is clumped in the cytoplasm of cells and about the mechanism by which it is implicated in two distinctly different diseases," says Stephen Snyder, Ph.D., program director, etiology of Alzheimer's disease, NIA Neuroscience and Neuropsychology of Aging Program. "It is possible that the TDP-43 protein will be a key to a more complete understanding of both FTD and ALS."

Linda Joy | EurekAlert!
Further information:
http://www.nia.nih.gov

Further reports about: FTD Neuron Protein clumps dementia neurodegenerative disease

More articles from Life Sciences:

nachricht Bioenergy cropland expansion could be as bad for biodiversity as climate change
11.12.2018 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht How glial cells develop in the brain from neural precursor cells
11.12.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

11.12.2018 | Physics and Astronomy

Topological material switched off and on for the first time

11.12.2018 | Materials Sciences

NIST's antenna evaluation method could help boost 5G network capacity and cut costs

11.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>