Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

OHSU researchers demonstrate how white blood cells cannibalize virus-infected cells

05.10.2006
Research helps explain how the human immune system works, possible new way to measure vaccine effectiveness

Researchers at the Vaccine and Gene Therapy Institute (VGTI) at Oregon Health & Science University have demonstrated how certain white blood cells literally eat virus-infected cells while fighting disease at the microscopic level. The research not only helps provide a clearer understanding of the body's immune system, it also offers hope of a new method for gauging vaccine effectiveness. The research is published in the current edition of the journal Nature Medicine.

CD8+ T-cells are specialized white blood cells that serve an important role in the body's immune system. The cells attack and destroy disease "invaders" such as viruses in the body. Previous studies indicated that T-cells may consume parts of cells with which they interact, but this new research shows this can happen in response to a systemic viral infection.

"If you use a fluorescent dye to stain infected cells, you can literally watch T-cells consume membranes and outer surfaces of diseased cells. As they destroy and cannibalize the fluorescently labeled cells, they become labeled with the fluorescent dye themselves," explained Mark Slifka, Ph.D., a researcher in the VGTI who led the research. Slifka is also a scientist in the Division of Pathobiology and Immunology at the Oregon National Primate Research Center and holds a concurrent appointment in the Department of Molecular Microbiology and Immunology in the OHSU School of Medicine.

"While we don't fully understand why this happens, one possibility is that the T-cell consumes virus-infected cells to fuel itself in the continued fight against an ongoing infection. It's sort of like invaders that pillage their defeated foe's supplies and then continue the fight."

The way in which Slifka and his colleague, Carol Beadling, made this discovery was quite serendipitous. The researchers were studying the interactions between virus-specific T-cells and fluorescently labeled infected cells when they noticed that the T-cells also began to glow with the fluorescent dye. Further investigation revealed that the CD8+ T-cells, often referred to as "killer" T-cells, were literally ingesting parts of the virus-infected cells that they were attacking.

Slifka and Beadling's findings follow a discovery by David Parker, Ph.D., a professor of Molecular Microbiology and Immunology in the OHSU School of Medicine. Parker and his colleague, Scott Wetzel, noted a similar behavior in CD4+ T-cells, often called "helper" T-cells, which are less aggressive T-cells but also an important aspect of the immune system.

"Another interesting finding for our lab is that in some ways, T-cells can be picky eaters," explained Slifka. "Although they will destroy almost any infected cell, they prefer to eat certain types of cells but not others. For instance, we noted that CD8+ T-cells consumed other white blood cells such as infected B-cells, but they were not fond of eating infected fibroblasts, a type of cell found in connective tissue. They're sort of like a 5-year-old who loves to eat cookies, but refuses to eat their brussels sprouts."

The researchers believe that these findings may be useful as a method for determining a vaccine's effectiveness during the process of immunization. Measuring the levels at which CD8+ T-cells respond to and consume a candidate vaccine could likely determine whether that vaccine is effective in educating the body's immune system as to what diseases to look for.

Jim Newman | EurekAlert!
Further information:
http://www.ohsu.edu

Further reports about: OHSU Slifka T-cell fluorescent virus-infected white blood cell

More articles from Life Sciences:

nachricht Mass spectrometry sheds new light on thallium poisoning cold case
14.12.2018 | University of Maryland

nachricht Protein involved in nematode stress response identified
14.12.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>