Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

International team analyzes human genetic variation in key immune region

27.09.2006
In-depth analysis will enable scientists to identify genetic risk factors for common immune diseases

An international group of researchers today unveiled a detailed map of human genetic variation within the major histocompatibility complex (MHC), the most important region of the human genome encoding the human response to infection, autoimmune disease and organ transplantation.

The work represents a milestone in the analysis of genetic variability for this fundamental immune region and lays the scientific foundation for future efforts aimed at uncovering the genetic roots of immune-related diseases. The findings of this international team, which includes scientists from the Montreal Heart Institute (MHI), the Université de Montréal (UdeM), the Broad Institute of MIT and Harvard and several other research institutions, appear in the September 24 advance online edition of Nature Genetics.

"This new map will be a key resource for researchers to use to find genes affecting health, disease, and responses to medications," said senior author Dr. John D. Rioux, PhD, who is associate professor of medicine at the UdeM and at the MHI where he works as a researcher and director of the Laboratory in Genetics and Genomic Medicine of Inflammation (www.inflammgen.org), visiting scientist of the Broad Institute of MIT and Harvard, and holder of the Canada Research Chair in Genetics and Genomic Medicine of Inflammation. "It will provide the information necessary to design powerful studies to identify the genetic risk factors located within the MHC."

... more about:
»Broad Institute »DNA »DNA sequence »HLA »MHC

The MHC -- specifically, the genes that comprise it -- is associated with more diseases than any other region of the human genome. This includes common diseases such as atherosclerosis, arthritis, diabetes, HIV, lupus, multiple sclerosis and Crohn's disease. However, pinpointing the specific changes that are causative in these diseases has been complicated by two factors: the extremely high degree of genetic diversity that exists in the MHC among different individuals and the tendency for multiple genetic differences in this region to be inherited together in groups called "haplotypes."

To characterize the haplotype patterns of the MHC, the researchers analyzed the variability in its DNA sequence in more than 350 individuals from diverse geographic regions, including Africa, Europe, China and Japan. Specifically, the researchers "read" ~7,500 single-letter changes in the genetic code called single nucleotide polymorphisms (SNPs) together with short segments of DNA sequence from a set of highly variable genes within the MHC, called "HLA genes." These genes form a distinctive fingerprint that is recognized by an individual's immune system to distinguish foreign tissues from "self" tissues and the genes' DNA sequences are frequently analyzed (a process called "HLA typing") in patients who receive organ transplants or suffer from autoimmune disease.

Importantly, the researchers' data and analyses, which are made available online to the entire scientific community, provide the tools needed to begin the initial efforts toward identifying genetic risk factors in the MHC for common immune-mediated diseases. Such endeavors, involving researchers at the Montreal Heart Institute, the University of California, San Francisco and the Broad Institute of MIT and Harvard, are now underway for several immune system diseases.

In addition, the results offer insights into the evolutionary history of the MHC region -- its early origins and the evolutionary forces that have helped to shape it over time. The findings also suggest that analyzing select SNPs within the HLA genes may offer a more economical alternative for characterizing the most common genetic variants in the region than standard HLA typing methods.

Nearly three-quarters of the DNA samples that the scientists analyzed had been previously examined as part of the International Haplotype Map ("HapMap") Project, a worldwide scientific collaboration to catalogue human genetic variation on a genome-wide scale. The latest findings, particularly the analyses of the HLA gene region, provide new and complementary information that can be integrated with data from the recently completed HapMap Project as well as other genomic efforts, to provide a comprehensive view of genetic variability in the human MHC.

| EurekAlert!
Further information:
http://www.umontreal.ca

Further reports about: Broad Institute DNA DNA sequence HLA MHC

More articles from Life Sciences:

nachricht Monitoring biodiversity with sound: how machines can enrich our knowledge
18.06.2019 | Georg-August-Universität Göttingen

nachricht Uncovering hidden protein structures
18.06.2019 | Universität Konstanz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Uncovering hidden protein structures

18.06.2019 | Life Sciences

Monitoring biodiversity with sound: how machines can enrich our knowledge

18.06.2019 | Life Sciences

Schizophrenia: Adolescence is the game-changer

18.06.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>