Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Predicting species abundance in the face of habitat loss

26.09.2006
Habitat loss poses the greatest threat to the survival of a species, and often precipitates the demise of top predators and wide-ranging animals, like the Siberian tiger and the orangutan.

Any hope of recovering such critically endangered species depends on understanding what drives changes in population size following habitat contraction. In a new study published in PLoS Biology, Nicholas Gotelli and Aaron Ellison test the relative contributions of habitat contraction, keystone species effects, and food-web interactions on species abundance, and provide experimental evidence that trophic interactions exert a dominant effect. Until now, direct evidence that trophic interactions play such an important role has been lacking, in part because manipulating an intact food web has proven experimentally intractable, and in part because these different modeling frameworks have not been explicitly compared.

Gotelli and Ellison overcame such technical limitations by using the carnivorous pitcher plant (Sarracenia purpurea) and its associated food web as a model for studying what regulates abundance in shrinking habitats. Every year, the pitcher plant, found in bogs and swamps throughout southern Canada and the eastern United States, grows six to 12 tubular leaves that collect enough water to support an entire aquatic food web. The pitcher plant food web starts with ants, flies, and other arthropods unlucky enough to fall into its trap. Midges and sarcophagid fly larvae “shred” and chew on the hapless insect. This shredded detritus is further broken down by bacteria, which in turn are consumed by protozoa, rotifers, and mites. Pitcher plant mosquito larvae feed on bacteria, protozoa, and rotifers. Older, larger sarcophagid fly larvae also feed on rotifers as well as on younger, smaller mosquito larvae.

Working with 50 pitcher plants in a bog in Vermont, Gotelli and Ellison subjected the plants to one of five experimental treatments, in which they manipulated habitat size (by changing the volume of water in the leaves), simplified the trophic structure (by removing the top trophic level—larvae of the dipterans fly, midge, and mosquito), did some combination of the two, or none of the above (the control condition). Dipteran larvae and water were measured as each treatment was maintained; both were replaced in the control condition and more water was added in the habitat expansion treatment. These treatments mimic the kinds of changes that occur in nature as habitat area shrinks and top predators disappear from communities.

The best predictors of abundance were models that incorporated trophic structure—including the “mosquito keystone model.” This model accurately reflected the pitcher plant food web, with mosquito larvae preying on rotifers, and sarcophagid flies preying on mosquito larvae. “Bottom-up” food-web models (in which links flow from prey to predator) predicted that changes in bacteria population size influence protozoa abundances, which in turn affect mosquito numbers, and that changes in bacteria abundance also affect mite numbers, which impact rotifer abundance. This scenario lends support to the model of a Sarracenia food web in which each link in the chain performs a specialized service in breaking down the arthropod prey that is used by the next species in the processing chain.

With over 200 million acres of the world’s forestlands destroyed in the 1990s alone, and an estimated 40% increase in the human population by 2050, a growing number of species will be forced to cope with shrinking habitat. Instead of trying to determine how individual species might respond to habitat loss, Gotelli and Ellison argue that incorporating trophic structure into ecological models may yield more-accurate predictions of species abundance—a critical component of species restoration strategies.

Citation: Gotelli NJ, Ellison AM (2006) Food-web models predict species abundances in response to habitat change. PLoS Biol 4(10): e324. DOI: 10.1371/journal.pbio.0040324.

Andrew Hyde | alfa
Further information:
http://dx.doi.org/10.1371/journal.pbio.0040324
http://www.plosbiology.org

Further reports about: Ellison Gotelli Predator abundance habitat larvae mosquito larvae rotifer trophic

More articles from Life Sciences:

nachricht Switch-in-a-cell electrifies life
18.12.2018 | Rice University

nachricht Plant biologists identify mechanism behind transition from insect to wind pollination
18.12.2018 | University of Toronto

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Pressure tuned magnetism paves the way for novel electronic devices

18.12.2018 | Materials Sciences

New type of low-energy nanolaser that shines in all directions

18.12.2018 | Physics and Astronomy

NASA research reveals Saturn is losing its rings at 'worst-case-scenario' rate

18.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>