Mosquitoes' sweet tooth could be answer to eliminating malaria

We have all suffered the irritation of being the food source for hungry mosquitoes. While it is generally well known that female mosquitoes need a meal of blood before laying their eggs, less has been written about their appetite for sweet snacks between meals.

It is this diet of “sweets” – derived from nectar from flowers and nectaries on plant leaves and stems – that provide mosquitoes with their persistent energy.

Schlein and his co-researcher, Günter Müller, in the Department of Parasitology at the Hebrew University-Hadassah Medical School's Kuvin Center for the Study of Infectious and Tropical Diseases, decided to exploit the mosquitoes' thirst for sweets to bring about their demise – by spraying acacia trees with a sugar solution that had been spiked with the oral insecticide Spinosad.

The experiment was carried out in an oasis in the southern desert region in Israel where some scattered trees flower most of the year, including during a long, dry and otherwise flowerless season. Schlein assumed that in the absence of other sugar sources nectar-searching mosquitoes would be attracted to these plants.

The oasis was chosen for its isolated mosquito population, so that the experiment could be carried out effectively without influx and exchange of mosquitoes from neighboring areas.

Sucrose solution spiked with the oral insecticide Spinosad was sprayed on acacia trees in the oasis. The spraying of insecticide had the effect of eliminating almost the entire mosquito population in the oasis. The few mosquitoes that were trapped after spraying were thought to be newly emerging adults, and cumulative population growth was prevented by continuous effect of the insecticide. Thus, the oasis was completely depleted of its mosquito population.

Schlein says that in a desert area, in the dry season, the flowers of sparse perennial trees or bushes are key elements in the habitat of adult mosquitoes, since they are the only source of sugar. In dry areas, the shortage of sugar sources may even limit the life span of mosquitoes and thus decrease their ability to transmit diseases. Even when a large variety of flowers is available, the number of sugar sources is limited by the preferences of the mosquitoes. For example, among 77 flowering plants in Wisconsin, mosquitoes concentrated on four dominant ones.

Schlein believes that blossoms that are nectar-feeding centers may be used for efficient mosquito-control, if sprayed with the Spinosad-sugar solution bait. Spinosad is an environmental “reduced-risk” oral insecticide that has little effect on several insect groups, and has low toxicity to birds and mammals.

Places that might be suitable for using floral centers for control of mosquitoes are desert and savannah regions, particularly in sub-Saharan Africa, where the burden of malaria is increasing due to environmental changes, drug resistance and mosquito resistance to conventional insecticides. These areas include large-scale irrigation projects in arid and semi-arid areas that cover nearly half of the arable land in Africa and similar projects in the desert in Pakistan. In these regions, irrigated crops, such as rice, are not a source of nectar for adult mosquitoes, while sugar meals are scarce in the surrounding arid areas.

Therefore, the planting of mosquito-attracting trees or bushes in suitable habitats, sprayed with oral insecticide, could provide a relatively easy and cheap way to supplement the limited arsenal against mosquitoes – and the fight against malaria.

Media Contact

Jerry Barach alfa

More Information:

http://www.huji.ac.il

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors