Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cellular traffic backups implicated in skeletal malformations

20.09.2006
A defective link in the intracellular protein "transit system" may lie at the heart of some craniofacial defects, new research in zebrafish suggests.

In the Sept. 17 online issue of Nature Genetics, Vanderbilt University Medical Center researchers report the identification of a mutation that causes severe skeletal deformities in zebrafish by shutting down a critical protein transport pathway.

The findings are surprising, said Ela Knapik, M.D., lead investigator on the study, because this pathway is thought to be so universal that a defect would prove fatal just hours after fertilization. But the mutant fish, named crusher, hatched and survived to nine days, albeit with striking skeletal abnormalities – craniofacial defects, kinked fins and shortened body.

The pathway affected by the crusher mutation is key to transporting proteins outside of the cell. All proteins are made in the endoplasmic reticulum (ER), a labyrinthine compartment just outside the cell's nucleus. Proteins are then "packaged" into transport containers called vesicles, which traverse the gelatinous cytoplasm of the cell's interior. The vesicles eventually dock with the Golgi, a structure that resembles a pancake stack and is the last major "transit station" of the cell. In the Golgi, proteins are modified into their active, final form before being shipped out to the surface of the cell in another type of vesicle. Once they reach their destination, the proteins either empty out into the extracellular space or take up residence in the cell membrane.

"Protein transport and secretion is a fundamental function of every living cell, in every organism," said Knapik, associate professor of Medicine and Cell and Developmental Biology. Similar mutations in yeast and cultured cells were lethal from the start, suggesting that no multicellular animal would be able to survive such a defect.

But, the crusher mutation appears to only affect chondrocytes, the cells that form the fish's cartilaginous skeleton. Chondrocytes secrete proteins like collagen into the extracellular space, laying down a rigid matrix (the extracellular matrix or ECM) that will form cartilage.

Under a microscope, type II collagen can mainly be found in the extracellular space. Only small amounts can be seen in the cytoplasm.

In the crusher fish, Knapik and colleagues found no extracellular type II collagen in the mutant tissue. Instead, the protein was either stuck within a bloated ER or associated with the proteasome, the cell's garbage disposal. In addition, the Golgi appeared shrunken and abnormal. This suggested that the protein somehow missed the first leg of its journey out of the cell, getting stuck at the first transit station, the ER.

The researchers have identified the source of the defect – a gene called sec23a, which is a critical component of the vesicles that transport proteins from ER to Golgi. But since the gene is supposedly active in all cells, just why chondrocytes are the only cell type affected by the mutation remains unclear.

"The fact that it affects only chondrocytes is very strange," Knapik said.

One possibility is that the fast growth of the craniofacial skeleton, which begins forming around day three, is more sensitive to the slow-down of protein transport than other cell types. Still, the results suggest that another unidentified mechanism for protein transport may exist in the other cell types.

"We had expected mutations in proteins like collagen or accessory matrix proteins to cause craniofacial malformations. Realistically, nobody suspected that these so-called 'housekeeping genes' are responsible for that sort of phenotype."

"For me, it's fascinating that the gene we have found was the least expected."

It turns out that the zebrafish mutant has a human counterpart, making the crusher mutant the first animal model that links ER to Golgi protein transport to a human craniofacial birth defect.

In the same issue of Nature Genetics – and back-to-back with Knapik's paper – a group of researchers from the University of California at Davis report the human variant of this gene, which causes a craniofacial condition called CLSD (Cranio-Lenticulo-Sutural Dysplasia) with strikingly similar defects to the crusher fish.

Although CLSD is a rare syndrome, there are hundreds of human congenital dysmorphologies of the skeleton, some of which might involve defects in this protein trafficking pathway. Knapik's model may provide insights into these disorders.

"No craniofacial or skeletal deformities – one of the most prominent human syndromes – had ever been linked to that pathway," Knapik said. "I'm very excited that now we have an animal model to study."

Melissa Marino | EurekAlert!
Further information:
http://www.vanderbilt.edu

Further reports about: Extracellular Golgi Knapik Mutant Mutation craniofacial crusher skeletal type

More articles from Life Sciences:

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

nachricht Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides
16.07.2018 | Tokyo Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>