Fatty acids and caveolin-1 are essential in liver regeneration

The journal Science [http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids

=16973879&query_hl=1&itool=pubmed_docsum] publishes in its next issue a research article where researchers from IDIBAPS, in collaboration with Universitat de Barcelona (UB) and Queensland University (Australia) discover the importance of caveolin-1 in liver regeneration. Without this protein, regeneration does not occur. This research work has been directed by Dr. Albert Pol, one of the first researchers with a Ramón y Cajal contract; and Dr. Carles Enrich, from the Department of Cell Biology and Pathological Anatomy from the Faculty of Medicine of the UB. The first signatories of this article are Manuel A. Fernández and Cecilia Albor.

Stem cells do not participate in liver regeneration, but hepatocytes, cells of the liver tissue, are able to regain their division capacity when needed. In a normal liver, hepatocytes do not divide, but during regeneration, all liver cells duplicate at least once. For this system to function, a fine regulation system is needed, permitting the hepatocyte to accumulate energetic reserves in the form of lipid accumulations, and starting the genetic machinery for division. IDIBAPS researchers studied the role of caveolin-1 in this process, comparing the regenerative capacity of normal mice and modified mice, which do not express the caveolin-1 gene. Both types of mice were extirpated 70% of their liver mass, and differences in regeneration process were analysed through microscopic and molecular techniques.

During the first stages of regeneration, liver cells accumulate a large amount of lipids in structures called lipidic bodies, whose importance was until today unknown. This study published in Science demonstrates that the energy needed in liver regeneration comes from lipids accumulated in liver cells during the first hours of the process. Genetically modified mice, not expressing caveolin-1, were incapable of forming the lipidic bodies necessary in order to provide energy for the regeneration. After 48 hours of the extraction of a part of the liver, the mortality of modified mice increased, and, after 72 hours, only 22% survived, whereas normal mice survived in 89% of cases. Similar results were obtained by avoiding caveolin-1 expression with the interference RNA technique, and the administration of glucose in mice without caveolin allowed them to have an alternative energy source and were able to regenerate liver with more normality.

Summarising, this work makes two important contributions: On the one hand, it reveals the main vital function of lipid bodies and caveolin. This is a protein linked to the storage of lipids and cell cycle, but a situation where its presence is indispensable for the survival of experimental animals has been described in this study for the first time. On the other hand, the article published in Science demonstrates that lipids can be the fuel for cell division, whereas until today, it was assumed that glucose was its first energy source. This discovery could explain why steatosis, a disease where an excessive accumulation of lipids in the liver, is considered a risk factor for the apparition of hepatocellular tumours. The excessive accumulation of lipids in the hepatocyte, as a consequence of excessive consumption of nutrients, obesity, type-2 diabetes or due to a bad liver functioning, affects in several degrees up to two thirds of the population in developed countries. Our researchers claim that an excess of lipid could represent for these cells an energy source sufficient to proliferate inadequately and, thus, to develop hepatic tumours.

Media Contact

Àlex Argemí Saburit alfa

More Information:

http://www.idibaps.ub.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors