Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rodent's bizarre traits deepen mystery of genetics, evolution

18.09.2006
A shadowy rodent has potential to shed light on human genetics and the mysteries of evolution.

Purdue University research has shown that the vole, a mouselike rodent, is not only the fastest evolving mammal, but also harbors a number of puzzling genetic traits that challenge current scientific understanding.

"Nobody has posters of voles on their wall," said J. Andrew DeWoody, associate professor of genetics in the Department of Forestry and Natural Resources, whose study appears this month in the journal Genetica. "But when it comes down to it, voles deserve more attention."

Small rodents often confused for mice, except with shorter tails and beady eyes, voles live throughout the Northern Hemisphere and are often considered agricultural pests because they eat vegetation. Nevertheless, voles are an "evolutionary enigma" with many bizarre traits, DeWoody said. Understanding the basis for these traits could lead to better understanding of the same phenomena in human genetics and genetic disorders, and could have implications for gene therapy, he said.

... more about:
»Chromosome »DNA »DeWoody »bizarre »species

The study focuses on 60 species within the vole genus Microtus, which has evolved in the last 500,000 to 2 million years. This means voles are evolving 60-100 times faster than the average vertebrate in terms of creating different species. Within the genus (the level of taxonomic classification above species), the number of chromosomes in voles ranges from 17-64. DeWoody said that this is an unusual finding, since species within a single genus often have the same chromosome number.

Among the vole's other bizarre genetic traits:

•In one species, the X chromosome, one of the two sex-determining chromosomes (the other being the Y), contains about 20 percent of the entire genome. Sex chromosomes normally contain much less genetic information.

•In another species, females possess large portions of the Y (male) chromosome.

•In yet another species, males and females have different chromosome numbers, which is uncommon in animals.

A final "counterintuitive oddity" is that despite genetic variation, all voles look alike, said DeWoody's former graduate student and study co-author Deb Triant.

"All voles look very similar, and many species are completely indistinguishable," DeWoody said.

In one particular instance, DeWoody was unable to differentiate between two species even after close examination and analysis of their cranial structure; only genetic tests could reveal the difference.

Nevertheless, voles are perfectly adept at recognizing those of their own species.

"I have seen absolutely no evidence of mating between different species," Triant said. "We don't know how they do this, but scent and behavior probably play a role."

DeWoody said, "The vole is a great a model system that could be used to study lots of natural phenomena that could impact humans."

His research focuses on the mitochondrial genome, the set of DNA within the cellular compartment responsible for generating energy (the mitochondria). Some of Triant's additional work explores the unique ability of vole's mitochondrial DNA to insert itself within DNA in the cell nucleus. The nuclear genome, as it is known, contains the vast majority of a cell's DNA and is responsible for controlling cellular function and development.

"Deb's work in this area could potentially have some basic science impact on gene delivery mechanisms, such as those used in gene therapy," DeWoody said.

In this relatively new therapy, treatment involves the insertion of a gene into human patients' cells in order to counter some illness or disease like hemophilia. However, it is often difficult to insert the desired gene in the "correct" location, or a location where it does what it is supposed to do. A better understanding of the unusual prevalence of this activity in voles, and the manner in which it happens, could have important human implications.

DeWoody's research was funded by the National Science Foundation and the U.S. Department of Agriculture. DeWoody hopes to continue his work on vole genetics at some point in the future.

Writer: Douglas M Main, 765-496-2050, dmain@purdue.edu

Sources: J. Andrew DeWoody, 765-496-6109, dewoody@purdue.edu

Deb Triant, 765.496-6868, dtriant@purdue.edu

Ag Communications: (765) 494-2722;
Beth Forbes, forbes@purdue.edu

Douglas M. Main | EurekAlert!
Further information:
http://www.purdue.edu

Further reports about: Chromosome DNA DeWoody bizarre species

More articles from Life Sciences:

nachricht Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides
16.07.2018 | Tokyo Institute of Technology

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>