Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fuel cell membrane materials offer solution for removing salt from water

14.09.2006
The problem of separating salt from water has long been solved by forcing the water through a polyamide membrane in a process called reverse osmosis (RO).

However, the water can't be disinfected with chlorine because it degrades polyamid material. Now, researchers at Virginia Tech have created a new polymer membrane for RO that will not be degraded by chlorine.

They will present the research at the 232nd National Meeting of the American Chemical Society on September 10-14 in San Francisco.

"Our RO materials grew out of our work on proton exchange membrane (PEM) materials used in fuel cells," said James McGrath, University Distinguished Professor of Chemistry at Virginia Tech. "The polymer structure is similar, but PEM materials are treated with a dilute acid and the RO materials are treated with a salt to put them in the neutral form."

... more about:
»McGrath »Membrane »Water

Last year, McGrath's group received funding from the Office of Naval Research (ONR) to develop an RO material that would not break down from chlorine. "We have suggested for some time that PEM materials could be used so our students quickly began sending sample materials for testing to Benny D. Freeman, chemical engineer at the University of Texas, Austin. And within a year we had a successful material. "People have been doing RO for 40 years, but not with this new material," McGrath said.

Post doctoral Associate Zhong-Biao Zhang will deliver a paper on how the new materials are made and how they work at 2:20 p.m. Wednesday, Sept. 13, in Salon B3 of the Marriott. Authors of "Synthesis of di-sulfonated poly(arylene ether sulfone) random copolymers as novel candidates for chlorine-resistant reverse osmosis membranes (PMSE 494)" are Zhang, Virginia Tech graduate students Guang-Yu Fan and Mehmet Sankir, Ho Bum Park and Freeman at the University of Texas, and McGrath.

The ONR has expanded the project to add Don Baird, professor of chemical engineering at Virginia Tech, to fabricate the membrane. "The material we created and evaluated in the first year was relatively thick," McGrath said. "To be competitive, it has to be a thin film so the water can pass through quickly -- 10 to 100 times thinner than our present samples. That is not trivial but we think we know how to do it."

The Virginia Tech research group has created an asymmetric membrane. Imagine rigid foam with a thin membrane skin. The separation takes place at the skin and the water passes quickly through the foam's large pores. Without the foam, the skin or film layer is not strong enough to withstand the pressure of RO.

McGrath is now looking for companies to work with to produce the new material.

He is also working on a different process to separate ethanol from water. "We think we can make membranes to do that too," he said.

Susan Trulove | EurekAlert!
Further information:
http://www.vt.edu

Further reports about: McGrath Membrane Water

More articles from Life Sciences:

nachricht Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea
10.12.2018 | Max-Planck-Institut für Marine Mikrobiologie

nachricht Carnegie Mellon researchers probe hydrogen bonds using new technique
10.12.2018 | Carnegie Mellon University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea

10.12.2018 | Life Sciences

New method gives microscope a boost in resolution

10.12.2018 | Physics and Astronomy

Carnegie Mellon researchers probe hydrogen bonds using new technique

10.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>