Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

EVGN Zebrafish platform boosts European research on cardiovascular disease

13.09.2006
A new technological European Vascular Genomics Network (EVGN), Zebrafish platform is now fully operative at The FIRC Institute of Molecular Oncology Foundation (IFOM, http://www.ifom-firc.it, http://www.ifom-ieo-campus.it). The platform was launched at the beginning of this year by EVGN (a Network of Excellence focused on vascular biology and cardiovascular disease funded by the European Commission under the 6th Framework Programme; http://www.evgn.org; http://www.evgnvascularscience.org/english/index.php) and is conceived as a facility to be shared by EVGN members and partner laboratories. Its aim is to expand the scientific and clinical research in the field of Cardiovascular Diseases.

The facility is led by EVGN member Marina Mione, IFOM scientist and leader of the Zebrafish group. Developed after an IFOM proposal to the consortium, the technological platform will provide EVGN members with the possibility to test and validate in this unique in vivo system data previously obtained in vitro. Funding comes from EVGN and it covers an initial period of 2 years (with 60.000€/yr). At present, there are 5 ongoing collaborative projects involving EVGN partner laboratories from Italy, Germany, Finland, U.K. and France, whose completion is expected in one or two years.

WHY ZEBRAFISH?

Zebrafish (Danio rerio) is an ideal low-cost powerful model widely used for screening the angiogenic and cardiovascular regenerative properties of novel genes, for the validation of new drugs and drug targets and for the investigation of other human diseases (neurodegenerative diseases, osteoarthritis etc.). This is not surprising, as this model organism is endowed with an immune system, and fully functional nervous and cardiovascular systems. Besides, many human genes have an equivalent in Zebrafish and a number of biochemical pathways are similar between fish and men, albeit the two species are distant.

Easy to grow, the individuals become sexually mature at three months and the females lay up to 300 eggs per mating. The most interesting feature, however, is represented by the eggs themselves, which are transparent and allow the direct observation of inner events. “For this reason – points out IFOM scientist Marina Mione - this system is particularly suitable to observe any experimental modification, especially those that involve the early steps of the vascular system’s development”.

UNVEILING ANGIOGENESIS

Angiogenesis, the blood vessels growth that occurs during embryogenesis or after myocardial infarction and stroke, is a complex event. During its physiological course it is precisely modulated at the genetic level. However, there are times where it would be desirable to modulate this process at will: boosting it after an ischemic event that leaves tissues without oxygen, or dimming it in tumours that sprout their own vessels to nourish themselves. In both cases, Zebrafish proves to be the ideal model system for hypothesis testing and validation.

“The rapid life cycle of Zebrafish together with eggs’ transparency – confirms Marina Mione – are two of the most interesting features of this organism. They allow real time screening of any introduced modification and are especially useful when it comes to the analysis of the vascular development. Blood vessels growth starts early but Zebrafish needs functional vessels only after several days, since the embryo is vital even in the absence of a fully formed vascular system. This is a clear advantage over other experimental systems. We can monitor what happens whether blood vessels are defective, follow their anomalous growth and correlate any visible alteration to the mutation we introduced.”

Investigations carried out in Mione’s laboratory include the generation of transgenic Zebrafish to observe directly cell behaviour during vasculogenesis (de novo vessel formation) and angiogenesis (vessel sprouting), the suppression of a gene of interest (technically called knock-down) as well as the rescue of an original character. “Loss- and gain-of-function experiments are part of so-called reverse genetics”, says Mione. “They are easy to perform in Zebrafish and very informative, since they provide critical information for the study of candidate genes”. In gain-of-function experiments scientists ask what would happen if a specific gene is activated in the embryo where it is not normally active, whereas in loss-of-function experiments, they ask what happens when a particular function is removed from the embryo altogether.

The experiment design starts in one EVGN institution where initial data are gathered from in vitro systems; then Mione and colleagues carry out in vivo assays to confirm the hypotheses. Hence the collaborative effort between the partners helps to provide complete answers to asked questions. Among the projects that Mione is following, there is a study carried out in collaboration with the EVGN laboratory directed by Seppo Ylä-Herttuala, at the Department of Biotechnology and Molecular Medicine, A.I.Virtanen Institute, University of Kuopio, Finland. "We are studying vasculogenesis – says Kati Pulkkinen, who works in Seppo Ylä-Herttuala's laboratory in Kuopio – using a technique called knockdown morpholinos, to inactivate genes in a selective way. Our experiments are at an early stage. But results are coming, and we are in the middle of confirming them.

“Another important part of our research – says Mione – is the definition of the molecular mechanisms that govern angiogenesis during tumour growth, as well as the selection of antiangiogenic drugs”. To this purpose, fluorescence vascularization tests in Zebrafish are extremely useful because they allow to unveil the involvement of some genes in the angiogenesis of tumours, and to screen drugs potentially able to stop the process.

Angiogenesis, drug screening and drug targeting are some of the most important issues EVGN scientists are focussing on. This is why the newly established Zebrafish platform has been welcomed with much enthusiasm, as it is expected to give meaningful contribution to the understanding of the process and to suggest new strategies to modulate it at clinical level.

“Recent studies – observes Alain Tedgui, EVGN Scientific Coordinator from INSERM U689 in Paris - indicate that using Zebrafish we can investigate not only the molecular mechanisms of development, but also the cellular and molecular physiology and pathology in the adult. In the context of EVGN, cardiovascular pharmacology and angiogenesis are certainly the two areas in which we can expect fruitful findings. A potential limitation of this model system is that, so far, there is no report that atherosclerosis develops in Zebrafish vessels. However, it may be just a question of time to be able to do so!”

The European Vascular Genomics Network (EVGN) is a network of excellence funded by the European Commission under the 6th Framework Programme "Life Science, genomics and biotechnology for Health", aiming at integrating and strengthening the European research area in the field of Cardiovascular Diseases (Contract Number: LSHM-CT-2003-503254). Additional information on the EVGN is available at http://www.evgn.org/

Francesca Noceti | alfa
Further information:
http://www.evgn.org

Further reports about: Angiogenesis Cardiovascular EVGN Mione blood vessel molecular mechanism vascular

More articles from Life Sciences:

nachricht A novel synthetic antibody enables conditional “protein knockdown” in vertebrates
20.08.2018 | Technische Universität Dresden

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

20.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>