Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biodegradable 'napkin' could help quickly detect, identify biohazards

12.09.2006
Detecting bacteria, viruses and other dangerous substances could soon be as simple as wiping a napkin or paper towel across a table, according to Cornell University researchers.

Once fully developed, the new absorbent wipe, embedded with nanofibers containing antibodies to numerous biohazards, could be used by virtually anyone to rapidly uncover pathogens in meat packing plants, hospitals, cruise ships, airplanes and other commonly contaminated areas, the researchers say.

The materials for this new process, which is still being tested in the laboratory, were described today at the 232nd national meeting of the American Chemical Society, the world's largest scientific society.

"It's very inexpensive, it wouldn't require that someone be highly trained to use it, and it can be activated for whatever you want to find," said Margaret Frey, Ph.D., Lois and Mel Tukman assistant professor of textiles and apparel at Cornell. "So if you're working in a meat packing plant, for instance, you could swipe it across some hamburger and quickly and easily detect E. coli bacteria." If biohazards were detected, she added, the area could be scoured and re-tested to confirm the contaminants were destroyed.

... more about:
»Pathogen »biohazard »fabric »nanofibers

In their experiments, Frey and her colleagues formed nanofibers with diameters between 100 nanometers and 2 microns (a human hair is about 80,000 nanometers wide). On these nanofibers, the researchers created platforms made of biotin, a B-vitamin and the protein streptavidin to hold the antibodies. The nanofibers, which are made of polyactide (PLA) - a polymer compound made from corn - can be used to make non-woven wipers or swabs. To reduce costs, the nanofibers also could be incorporated into conventional paper products.

"The fabric basically acts as a sponge that you can use to dip in a liquid or wipe across a surface," Frey said. "As you do that, antibodies in the fabric are going to selectively latch onto whatever pathogen that they match. Using this method we should, in theory, be able to quickly activate the fabric to detect whatever is the hazard of the week, whether it is bird flu, mad cow disease or anthrax."

For now, identifying the collected pathogens requires a separate analytical step. But Frey and colleagues are working on methods, such as color changes in the fabric, which would instantly identify the contaminant.

"We're probably still a few years away from having this ready for the real world," Frey said, "but I really believe there is a place for this type of product that can be used by people with limited training to provide a fast indication of whether a biohazard is present."

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org

Further reports about: Pathogen biohazard fabric nanofibers

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>