Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plants give up answers in the war on bacteria

11.09.2006
Back-to-back scientific papers are offering a revolutionary look at the battlefield on which plant diseases are fought – and often lost – to bacteria.

The laboratory of Sheng Yang He at Michigan State University has changed the textbook description of a plant’s surface terrain and is unveiling new knowledge of how bacterial pathogens invade plants and take hold. The most recent paper, published in the Sept. 8 edition of Cell, redefines the role of the plant’s pores in defense against invading bacteria and how some bacteria can overpower plants.

Last month, in Science Magazine, the lab outlined a better understanding of how bacteria set up camp and destroy the plant’s ability to fight infection.

The work was funded by the National Institutes of Health and the U.S. Department of Energy and supported by the Michigan Agricultural Experiment Station.

“We’ve known for 100 years that bacterial pathogens cause illness in crops, yet we still don’t understand how they produce disease,” said He, a professor of plant biology, plant pathology, and microbiology and molecular genetics. “It’s very frustrating. How does this little thing do such great damage to plants?”
... more about:
»Melotto »plant’s »stomata

But this summer, Maeli Melotto, a research associate, and Bill Underwood, a graduate student, in He’s laboratory, shed light on the behavior of one the plant’s first lines of defense against disease. Pores called stomata are like tiny mouths that open and close during photosynthesis, exchanging gases. In sunshine, the stomata open. In darkness, they close to conserve water.

It has been assumed that these tiny ports were busy with their photosynthesis business and were merely unwitting doorways to invading bacteria on a plant’s surface. Melotto and Underwood, however, have discovered that stomata are an intricate part of the plant’s immune system that can sense danger and respond by shutting down.

The lab performed experiments on Arabadopsis, a common laboratory plant, but the mechanisms could be universal across all land plants.

“When we started looking more closely, and put bacteria on a plant surface, stomata close. It’s like they say ‘oh, we have to close the doors!’” Melotto said. “Even if it is in bright daylight, when the stomata are supposed to be open, they close.”

Some bacteria have gotten smarter. Melotto and Underwood found that plants recognized human-infecting bacteria, such as E. coli, and kept the stomata closed to them. Plant-infecting bacteria, like those most destructive to crops, have figured out a way to reopen the shut-down ports.

It appears those plant-based bacteria produce a phytotoxin, a chemical called coronatine, to force the pores back open. For bacteria, entry is crucial to causing disease and probably survival. They could die if left lingering on the surface. Animal-based bacteria do not produce coronatine.

“Now that we know a key step in bacteria’s attack, we have something we can learn to interfere with,” Melotto said. “From this we can learn about disease resistance.”

It’s a weighty issue. Bacterial diseases can be catastrophic to crops. One disease, called fire blight, did $40 million in destruction to Michigan apple trees in 2000 alone and all but eliminated commercial pear crops in Michigan for that year.

He also sees useful human health implications. Understanding that animal pathogens, like dangerous E. coli, cannot easily gain access inside the plant helps scientists know how to best combat bacteria that cause foodborne illness. It is important to know, he explained, whether foodborne illnesses rest on the surface of an edible plant, or nestle inside, impervious to washing.

“We are thinking about the mysteries of plant pathologies, but these have broad implications,” He said. “We haven’t understood very well how plants and bacteria interact, but we’re finally seeing the light.”

Sheng Yang He | EurekAlert!
Further information:
http://www.msu.edu

Further reports about: Melotto plant’s stomata

More articles from Life Sciences:

nachricht During HIV infection, antibody can block B cells from fighting pathogens
14.08.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht First study on physical properties of giant cancer cells may inform new treatments
14.08.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>