Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

EU, US and Canada to collaborate to increase understanding of the genetic make-up of human diseases

08.09.2006
The European Commission, US National Institutes of Health and Genome Canada are today announcing a global collaborative research programme designed to lead to better understanding of human diseases.

Although many genes have been linked to major diseases or conditions such as cancer, heart disease, neurological disorders, diabetes and obesity, research is still needed into why these genes are important and what their role is in the disease. As mice and humans share 99% of their genetic make-up, this international collaborative programme will study the activity of genes in mice, using a process that “knocks out” specific genes. This programme will help researchers unravel the genetic networks underlying disease. The project will cost a total of €56.6m, with the EU’s Research Framework Programme contributing €13m. The information on mutations in the mouse genome generated by the programme will be rapidly accessible to the worldwide scientific community, constituting a significant resource to help translate basic research into improvements in human health.

European Science and Research Commissioner Janez Potocnik welcomed the joint programme, saying “International scientific collaboration is in the interests of us all; pooling knowledge will increase our chance to make discoveries that can benefit human health. There is so much we still don’t know about the effect of genes on the development of our major diseases. Research like this gives hope to many of those suffering serious illnesses and their families.”

Our genetic material is composed of about 28 000 different genes. However, just identifying a gene does not tell much about its potential function in health and disease. To investigate this it is necessary to mutate the gene in a model organism that is closely related to humans. Genetically, the mouse is the model organism of choice for human disease research, as about 99% of human genes are found in the mouse genome and vice versa. In addition, a powerful mutagenesis technology has been developed, that currently can only be applied in the mouse to inactivate a specific gene in a time- and space-dependent manner. This approach allows researchers to unravel very precisely the genetic networks underlying disease.

... more about:
»Canada »Collaborative »Genom »Human »Resource »mutagenesis

Mutations in all the genes of a mammalian genome

The European Commission, US National Institutes of Health (NIH) and Genome Canada will finance the largest collaborative research effort (56.6 m€) worldwide after the Human Genome Project to produce mutations in all the mouse genes, using gene trapping and gene targeting approaches. This project will enable mouse mutants to be generated in any laboratory in a standardised and cost-effective manner, thereby making them available to a much wider biomedical research community than has been possible previously. This mutant resource will be of crucial importance for health research since it will allow scientists to dissect gene functions within a living organism (in vivo) more accurately and to mimic human disease conditions more closely. In doing so, it will also speed up significantly drug developments for the treatment of human diseases.

World-wide collaborative research effort in mouse mutagenesis

This world-wide mouse mutagenesis collaborative effort networks three major initiatives: The EUCOMM project financed by the European Commission with 13m€, the NorCOMM project which received 4.4 m€ from the Canadian government and the Knockout Mouse Project (KOMP) project financed by the US-NIH with 39.2 m€. A steering committee composed of the scientists leading these three research projects and representatives from the funding agencies will coordinate this collaborative effort to ensure complementarity and to avoid overlaps. These leading scientists and funding agencies have agreed to make freely accessible to the scientific community the mutant resources generated in their respective projects, thereby maximising the benefit of each of these projects. Other funding agencies and scientific projects involved in similar mouse mutagenesis programmes in other countries are also encouraged to join in this present effort provided they will agree to the same principle.

EU invests €135 million in mouse functional genomics

The European Union is a major sponsor of mouse functional genomics research. Since 2002, fifteen ongoing European collaborative projects have received a total of €135 million from the EU’s Fifth and Sixth Framework Programmes. They are using the mouse as a model for elucidating gene functions in health and disease. Some of these projects are developing new tools, technologies, and resources that are essential for the success of mouse functional genomics. Other projects are using mouse models to investigate the functions of key genes involved in important biological processes such as hearing, muscle formation, kidney function angiogenesis embryonic stem cell differentiation and the immune system.

Wappelhorst Michael | alfa
Further information:
http://www.ec.europa.eu/research

Further reports about: Canada Collaborative Genom Human Resource mutagenesis

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>