Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA study uncovers new risk factor for schizophrenia

07.09.2006
Gene particularly linked to females, finds Semel Institute research

UCLA scientists have discovered that infants who possess a specific immune gene that too closely resembles their mothers' are more likely to develop schizophrenia later in life. Reported in the October issue of the American Journal of Human Genetics, the study suggests that the genetic match may increase fetal susceptibility to schizophrenia, particularly in females.

HLA-B is one of a family of genes called the human leukocyte antigen (HLA) complex, which helps the immune system distinguish the body's own proteins from those made by foreign invaders, such as viruses and bacteria. The developing fetus inherits one copy of the HLA-B gene from each parent.

"Our findings clearly suggest that schizophrenia risk rises, especially in daughters, when the child's HLA-B gene too closely matches its mother's," explained Christina Palmer, Ph.D, UCLA associate professor of psychiatry and human genetics and a researcher at the Semel Institute for Neuroscience and Human Behavior. "We don't know whether sons who match are not affected -- or are more affected and less likely to come to term."

... more about:
»HLA-B »UCLA »factor »schizophrenia

In 2002, Palmer and her colleagues discovered that infants are twice as likely to develop schizophrenia later in life when they possess a cell protein called Rhesus (Rh) factor that their mothers lack. Later studies found that male babies were more vulnerable to the consequences of Rh incompatibility than female infants.

The UCLA team hypothesized that females must possess a different fetal risk factor that predisposes them to schizophrenia. They decided to focus on HLA-B, which previous studies had linked to prenatal complications, like preeclampsia and low birth weight, that in turn have been associated with schizophrenia.

The researchers studied a group of 274 Finnish families in which at least one child had been diagnosed with schizophrenia or a related psychosis. In this group, 484 offspring had been diagnosed with the disease.

The scientists drew blood samples from everyone and performed DNA analysis, identifying cases in which children's HLA-B genes closely matched their mothers'.

Analysis of the entire sample revealed that daughters whose HLA-B genes matched their mothers' were 1.7 times more likely to develop schizophrenia than children who don't match their mothers'. If this risk could be removed, the researchers calculated that up to 12 percent of the cases of schizophrenia in daughters could be prevented.

"Our findings point out a paradox in pregnancy," said Palmer. "Why doesn't the mother's immune system reject her fetus when it inherits a copy of the HLA gene from the father that substantially differs from hers?

"It seems pretty clear that it's a good thing for the HLA genes of a mother and her fetus to not match," she added. "We suspect that HLA-matching increases a woman's susceptibility to pregnancy complications, which in turn predispose her child to schizophrenia. This is one more piece in the puzzle of identifying genetic markers for the disease."

The UCLA findings will enhance scientists' ability to detect genes that promote adverse prenatal conditions and deepen understanding of how these genes and the prenatal environment act separately and together to increase vulnerability to schizophrenia.

"In the future, we also may be able to produce tailored risk assessments for individuals with personal or family histories of schizophrenia," said Palmer.

Elaine Schmidt | EurekAlert!
Further information:
http://www.mednet.ucla.edu

Further reports about: HLA-B UCLA factor schizophrenia

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

Im Focus: Graphene enables clock rates in the terahertz range

Graphene is considered a promising candidate for the nanoelectronics of the future. In theory, it should allow clock rates up to a thousand times faster than today’s silicon-based electronics. Scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) and the University of Duisburg-Essen (UDE), in cooperation with the Max Planck Institute for Polymer Research (MPI-P), have now shown for the first time that graphene can actually convert electronic signals with frequencies in the gigahertz range – which correspond to today’s clock rates – extremely efficiently into signals with several times higher frequency. The researchers present their results in the scientific journal “Nature”.

Graphene – an ultrathin material consisting of a single layer of interlinked carbon atoms – is considered a promising candidate for the nanoelectronics of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

 
Latest News

Making better use of enzymes: a new research project at Jacobs University

19.09.2018 | Life Sciences

Light provides spin

19.09.2018 | Physics and Astronomy

Enjoying virtual-reality-entertainment without headache or motion sickness

19.09.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>