Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lost in the labyrinth

04.09.2006
Decoding the instructions that tell cells how to become blood

Blood cells have limited lifespans, which means that they must be continually replaced by calling up reserves, and turning these into the blood cell types needed by the body. Claus Nerlov and his colleagues at the European Molecular Biology Laboratory (EMBL) unit in Monterotondo, Italy, in collaboration with researchers from Sten Eirik Jacobsen’s laboratory at the University of Lund in Sweden, have now uncovered how an intracellular communication pathway contributes to this process. Because defects in such pathways and in the development of stem cells frequently lead to leukemia and other diseases, the work should give researchers a new handle on processes within cells that lead to cancer. The work is published in this week’s online issue of Nature Immunology.

Over the past decades, molecular biologists have identified several pathways – sequences of molecules which manage the flow of information within the cell – responsible for major biological processes. One of these, the “Wingless” pathway, plays a vital role in shaping tissues and organs in developing embryos of nearly all animal species. It also helps organisms manage stem cells, by keeping them on hold and preventing their differentiation until the right time. Such pathways are usually switched on and off by external stimuli that help cells respond properly to the environment. Now Peggy Kirstetter and other members of Nerlov’s lab have shown what happens when Wingless is too active in hematopoietic stem cells in mice.

“We modified one element of the pathway, a protein called beta-catenin, so that it was stuck in ‘transmission mode,’” Kirstetter says. “This created cells in which the pathway was always switched on. We’ve known that Wingless contributes to blood differentiation, but didn’t know how the signals were being transmitted within the hematopoietic stem cell.”

... more about:
»Beta-Catenin »Wingless »blood cell »stem cells

The modified protein had dramatic effects. Usually, most cells undergo numerous transitional stages on their way from stem cells to fully-developed types in the blood. Several types of blood cells vanished entirely; the same thing happened to more basic cell types higher up in the blood lineage hierarchy. Particular kinds of stem cells disappeared from the bone marrow of the mice. Others were too frequent. Bone marrow cells didn’t develop into myeloid and red blood cells. B- and T-cells were also blocked at early stages, but in a different way. This hints that they may be controlled by other protein links in the Wingless pathway as well. Perhaps most strikingly, beta-catenin appears to make cells take decisions about their fate before they leave the stem cell compartment in the bone marrow, something so far not thought to occur.

The study proves that beta-catenin plays a central role in determining whether blood cells form or not. On the other hand, an overactive Wingless pathway doesn’t seem to damage cells that already exist. Thus beta-catenin seems to be a decision-maker, a selector of how information gets routed within the cell, rather than something which maintains the vitality of existing cells.

Nerlov compares the breakdown to people standing at a fork in a labyrinth, hesitating before they go on. “We know there are strong connections to cells’ decisions to divide, to develop or to die. If cells don’t commit themselves to the right developmental path at the right time, they’re very likely to die or to begin an inappropriate type of reproduction. Acute leukemias and other forms of cancer cells derive from defects such as this. Understanding the processes by which they form will require pinpointing the forks in the road where things go wrong.”

Anna-Lynn Wegener | alfa
Further information:
http://www.embl.de

Further reports about: Beta-Catenin Wingless blood cell stem cells

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>