Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Polymers show promise for lab-on-a-chip technology

01.09.2006
Researchers are touting the use of liquid crystalline polymers (LCP) as a viable tool for use in devices such as the sought-after lab-on-a-chip technology.

University of Alberta researchers, collaborating with colleagues at the Eindhoven University of Technology and Phillips Research Laboratories in the Netherlands, have shown that LCP, when formed into a thin film on a glass backing, can be fabricated and patterned on a microscale. The research was published recently in the Journal of Material Chemistry.

"Based on our research of liquid crystalline polymers, we anticipate the emergence of exciting new techniques in microfabrication that can be used to cheaply and efficiently pattern response materials," said Anastasia Elias, a PhD student in Dr. Michael Brett's group in the U of A Department of Electrical and Computer Engineering and the first author of the paper.

LCPs are often described as "artificial muscles" that can convert thermal, chemical and electromagnetic stimuli into mechanical energy, Elias said. LCPs are polymers made from liquid crystalline molecules, which are well-known for their use in display applications, such as laptop computer screens, where they are used for their unique optical properties.

... more about:
»LCP »Lab-on-a-Chip »Polymers »microscale

Elias and her colleagues conducted a number of preliminary LCP experiments on a microscale in order to better understand and describe the material's mechanical properties. They believe the material holds promise as a microscale building block. It's now up to other engineers and scientist to take this knowledge and create useful microscale devices.

The most commonly cited goal among micro- and nanoscale researchers is to create a lab-on-a-chip – a tiny system that could be used, for example, to analyze blood samples and biopsies much faster, cheaper and more comprehensively than current methods.

In the past, most microscale research and development funds have targeted silicon, the fundamental material in the semiconductor industry. But LCPs are less brittle and more pliable than silicon, Elias said, adding that LCP devices could be tailored to respond to specific external stimuli, such as temperature changes and UV radiation exposure, which could makes them easier to activate than silicon. And, perhaps most importantly of all, LCPs are less expensive than silicon and potentially easier to process, Elias said.

"Ultimately, we believe liquid crystalline polymers will be fully integrated in microelectromechanical systems, such as the emerging lab-on-a-chip applications," she said.

Ryan Smith | EurekAlert!
Further information:
http://www.ualberta.ca

Further reports about: LCP Lab-on-a-Chip Polymers microscale

More articles from Life Sciences:

nachricht Magic number colloidal clusters
13.12.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Record levels of mercury released by thawing permafrost in Canadian Arctic
13.12.2018 | University of Alberta

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Magic number colloidal clusters

13.12.2018 | Life Sciences

UNLV study unlocks clues to how planets form

13.12.2018 | Physics and Astronomy

Live from the ocean research vessel Atlantis

13.12.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>