Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tight-knit family: Even microbes favor their own kin

25.08.2006
Single-celled microbes close ranks with relatives in times of need

New research published by Rice University biologists in this week's issue of Nature finds that even the simplest of social creatures – single-celled amoebae – have the ability not only to recognize their own family members but also to selectively discriminate in favor of them.

The study provides further proof of the surprisingly sophisticated social behavior of microbes, which have been shown to exhibit levels of cooperation more typically associated with animals.

"By recognizing kin, a social microbe can direct altruistic behavior towards its relatives," said postdoctoral researcher Natasha Mehdiabadi, the lead author of the study.

Recognizing one's own family is a common trait among animals – be they chimpanzees, ground squirrels or paper wasps – and because kin recognition can strongly influence cooperative behaviors it can also significantly impact the social evolution of species.

While scientists have repeatedly documented cases of kin recognition, the Rice study is among the first to document the more sophisticated trait of kin discrimination in a social microorganism.

The new study is based on an examination of single-celled Dictyostelium purpureum, a common soil microbe that feeds on bacteria. In the wild, when food runs short, D. purpureum aggregate together by the thousands, forming first into long narrow slugs and then into hair-like fruiting bodies. Resembling miniature mushrooms, these fruiting bodies consist of both a freestanding stalk and the spores that sit atop it. Ultimately, the spores are carried away, usually on the legs of passing creatures, to start the life cycle all over again. But in order to disperse the spores, some of the colony's individuals must altruistically sacrifice themselves in order to make the stalk.

Mehdiabadi and others in the lab of Rice evolutionary biologists Joan Strassmann and David Queller sought to find out whether D. purpureum discriminate by preferentially directing this altruism toward their relatives.

The team collected wild strains of D. purpureum from the Houston Arboretum and took them back to the lab where they were cultured in dishes. In each of 14 experiments, a pair of strains were placed in a dish in equal proportion, and one of the strains in each pair was labeled with a fluorescent dye.

Food was withheld, causing the microbes in each dish to form dozens of slugs and fruiting bodies. Upon observing their social development, the team found that individual fruiting bodies contained predominantly one strain or the other.

"Our experiments ruled out potential differences in developmental timing and showed that these organisms preferentially associate with their own kin," said Strassmann, the Harry C. and Olga K. Wiess Professor in Natural Sciences, who also chairs Rice's Department of Ecology and Evolutionary Biology.

It's unclear how D. purpureum distinguishes relatives from non-relatives, but Mehdiabadi said the process likely relies on a genetic mechanism.

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>