Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Snapdragons take the evolutionary high-road

18.08.2006
Roses are red, violets are blue, but why aren't snapdragons orange? Norwich scientists from the John Innes Centre (JIC) and the University of East Anglia (UEA) in collaboration with the Université Paul Sabatier (Toulouse, France) have developed a pioneering computer modelling technique that traces the evolutionary paths underlying flower colour variation in the model plant snapdragon (Antirrhinum).Their research, funded by the BBSRC and published today in the journal Science, shows how flower colour diversity has evolved in natural populations of these plants in the Pyrenees.

In the wild, only the plants with the most attractive flower colours are able to reproduce and thrive because the insects that pollinate them prefer certain colours. The bees that pollinate snapdragon find magenta and yellow flowers the most attractive; they do not find colours such as orange attractive and so flowers of this colour would not flourish in the wild due to lack of pollination. Scientists already know that natural colour variation is controlled by three genes: ROSEA and ELUTA affect the intensity and pattern of the magenta pigment anthocyanin and thirdly SULFUREA affects the distribution of the yellow aurone pigment. The researchers in this study wanted to understand how plants producing magenta or yellow flowers could evolve from a common ancestor without producing in-between non-attractive flower colours such as orange.

"This is a totally different way of looking at evolution and could lead to a better understanding of the rules that govern biodiversity" explains Coen, "If we can comprehend how Antirrhinum genes interact in their natural habitat, it may help us in the future to better preserve genetic diversity".

The team led by Enrico Coen (JIC) and Andrew Bangham (UEA) combined molecular, genetic and computational approaches to analyse flower colour variation in natural populations of snapdragon. Using a traditional model, a plot of evolutionary fitness for this study appears to have two peaks: one at the magenta end of the colour spectrum and a second peak at the yellow end, with a trough in the middle representing non-attractive intermediate colours such as orange. As a result, for a plant to evolve from producing magenta flowers to yellow ones it would first have to pass through the trough and produce non-attractive orange flowers before developing yellow ones. However, as Bangham points out, “There are computational methods for understanding and visualising high-dimensional problems that provide new insights”. With these, a more realistic model was created and the researchers discovered that different attributes (phenotypes) that previously appeared as separate peaks in the adaptive landscape, were in fact connected by paths in higher dimensions, forming a U-shaped cloud, with one arm representing magenta connected to the second arm representing yellow. Using this new model, the scientists could trace the evolutionary path that linked these two apparently distinct colour attributes.

"We now understand how these plants can evolve to produce different colours whilst staying attractive to pollinating insects – we've found that colour is variable but constrained to a defined path" states Enrico Coen. But if pollinators prefer certain coloured flowers, why aren't all flowers the same colour? "We still do not know precisely why flower colours should vary in the first place," says Coen, "it could be due to drifting of colours from one to another by accumulation of genetic errors, or alternatively there could be a selective advantage for certain colours in different environments".

The researchers are now applying this new way of modelling evolution to other phenotypes, allowing them to identify how apparently distinct attributes are linked through evolution.

Vicky Just | alfa
Further information:
http://www.jic.ac.uk

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>