Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Have you ever seen an elephant…… run?

18.08.2006
If an elephant is thundering towards you at 15mph you are probably not too concerned with the finer points of biomechanics or the thorny question about whether they are truly running or not. But for researchers, understanding these points and getting a clearer picture of how elephants move their seven tonnes of bulk at speed offers the potential to improve animal welfare, inform human biomechanics and even help in the design of large robots.

Dr John Hutchinson, a research leader at the UK’s Royal Veterinary College (RVC), has already shown that, contrary to previous studies and most popular opinion, elephants moving at speed appear to be running. Now with funding from the Biotechnology and Biological Sciences Research Council (BBSRC) his team is using Hollywood-style motion capture cameras combined with MRI and CT scans of elephants to build 3D computer models of elephant locomotion to show the forces and stresses at work on muscles, tendons and bones.


A young elephant steps out at Whipsnade Wild Animal Park while cameras record the movement of the disc shaped markers on its legs and back.

The research team has been working with elephants at UK wildlife and safari parks and will shortly travel to Africa and Thailand to study wild animals. Fifteen temporary markers are placed on the elephants’ joints and the animals then move past a motion capture camera, recording at 240 frames per second, at varying speeds. Back in the lab the researchers can then use the footage to reconstruct the rotations of the elephants’ joints on a computer, creating a 3D stick model of the animal.

The computer models are being used to establish how limb structure relates to elephant locomotion and to determine finally if elephants really can run – or in scientific terms, at some point do they have all their feet off the ground at the same time? Dr Hutchinson said: “We are particularly interested how elephants coordinate their limbs and working out which joints contribute most to the length and frequency of their steps. In examining whether elephants truly run or not we need to understand what limits their top speed. Is it the tendons and muscles having to withstand the impact of 7 tonnes of elephant or is it something else?”

This is not a trivial question as Dr Hutchinson explained: “A better understanding of elephant biomechanics offers the possibility for real animal welfare improvements. By developing ways to spot slight changes in gait and joint movements in captive elephants we can catch the early onset of osteomyelitis and arthritis. If these conditions are not treated early they can result in an elephant being put down.”

The research also informs other biomechanical studies as the elephant leg has surprising similarities to our own. Humans have the same structure of a straight leg with a long thigh and short foot. Studies of animal locomotion are also key to the design of effective walking robots. By understanding how evolution achieved the joint structure and limb coordination of an animal as large as an elephant we will be better able to construct our own man-made walking robots.

Matt Goode | alfa
Further information:
http://www.bbsrc.ac.uk

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>