Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fatty spheres loaded with siRNA shrink ovarian cancer tumors in preclinical trial

17.08.2006
Nanoparticles slip through blood vessel pores to attack tumor

A molecular "off" switch packaged in a tiny sphere penetrates deeply into ovarian cancer tumor cells, stifling a troublesome protein and drastically reducing the size of tumors, researchers at The University of Texas M. D. Anderson Cancer Center report in the Aug. 15 edition of Clinical Cancer Research.

The mouse model experiment, featured on the cover of the journal, demonstrates a potent delivery system for short interfering RNA (siRNA) to attack cancer, says senior author Anil Sood, M.D., associate professor in the Departments of Gynecologic Oncology and Cancer Biology at M. D. Anderson.

"Short interfering RNA is a great technology we can use to silence genes, shutting down production of harmful proteins," Sood says. "It works well in the lab, but the question has been how to get it into tumors." Short pieces of RNA don't make it to a tumor without being injected directly, and injection methods used in the lab are not practical for clinical use.

The research team took siRNA that targets a protein that helps ovarian cancer cells survive and spread and rolled it into a liposome -- a lipid ball so small that its dimensions are measured in nanometers (billionths of a meter).

Getting the siRNA inside tumor cells is important, Sood said, because the targeted protein, focal adhesion kinase (FAK), is inside the cell, rather than on the cell surface where most proteins targeted by cancer drugs are found. "Targets like FAK, which are difficult to target with a drug, can be attacked with this liposomal siRNA approach, which penetrates deeply into the tumor," Sood said.

Mice infected with three human ovarian cancer cell lines derived from women with advanced cancer were treated for 3-5 weeks. They received liposomes that contained either the FAK siRNA, a control siRNA, or were empty. Some mice received siRNA liposomes plus the chemotherapy docetaxel.

Mice receiving the FAK-silencing liposome had reductions in mean tumor weight ranging from 44 to 72 percent compared with mice in the control groups. Combining the FAK-silencing liposome with docetaxel boosted tumor weight reduction to the 94-98 percent range.

These results also held up in experiments with ovarian cancer cell lines resistant to docetaxel and to the chemotherapy drug cisplatin.

The FAK-silencing liposome and the liposome with chemotherapy also reduced the incidence of cancer by between 20 and 50 percent in all tested cancer lines.

In addition to its anti-tumor effect, the researchers found that the therapeutic liposome attacked the tumor's blood supply, especially when combined with chemotherapy. By inducing cell suicide (apoptosis) among blood vessel cells, the treatment steeply reduced the number of small blood vessels feeding the tumor, cut the percentage of proliferating tumor cells and increased cell suicide among cancer cells.

Sood and Professor of Molecular Therapeutics Gabriel Lopez-Berestein, M.D., an expert in liposomal therapeutics, cite at least two factors for the success of the anti-FAK liposome.

"This particle is so small, it has no problem getting through the tumor's vasculature and into the tumor," Lopez-Berestein says. The FAK-targeting liposome ranges between 65 and 125 nanometers in diameter. Blood vessels that serve tumors are more porous than normal blood vessels, with pores of 100 to 780 nanometers wide. Normal blood vessel pores are 2 nanometers or less in diameter.

Second, the liposome -- a commercially available version known as DOPC -- has no electrical charge. Its neutrality provides an advantage over positively or negatively charged liposomes when it comes to binding with and penetrating cells.

The next step for the FAK siRNA-DOPC liposome is toxicity testing. "So far it appears to be very well-tolerated," Sood says. "We hope to develop this approach for clinical use in the future."

In addition to ovarian cancer, FAK is overexpressed in colon, breast, thyroid, and head and neck cancers.

Scott Merville | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Life Sciences:

nachricht Seeing on the Quick: New Insights into Active Vision in the Brain
15.08.2018 | Eberhard Karls Universität Tübingen

nachricht New Approach to Treating Chronic Itch
15.08.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>