Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

£2 Million Pound Grant to Revolutionise Drug Delivery Technologies

16.08.2006
Scientists from the Universities of Dundee and St Andrews have won a major new research grant to develop a completely new technology for delivering cell-by-cell medical treatments.

The researchers hope to develop new, non-invasive surgical techniques using ultrasound and laser technology which could be applied within the context of cancer and gene therapies.

Dr Paul Campbell, at the University of Dundee, and Professor Kishan Dholakia, of the University of St Andrews, have each been awarded more than £1 million through the UK ‘Basic Technology’ Programme, administered by the Engineering and Physical Sciences Research Council.

The grant announcement follows on from preliminary research undertaken by the Dundee-St Andrews collaboration over the past year, which achieved a notable breakthrough in 2005 in understanding how cancer cells can be targeted and destroyed by a single pulse of ultrasound energy using a `sniper rifle’ approach developed from military technology.

Dr Campbell and Professor Dholakia, together with colleagues at their respective institutions, are now developing the techniques learned from their previous research to create tools which will revolutionise the delivery of genes, drugs and therapeutic molecules to single cells and tissue samples.

This new technology - utilising ultrasonics and photonics - promises to deliver a quantum leap for biologists studying the cell’s chemical pathways or signals.

The two University teams are now planning to combine the most useful aspects of both the ultrasound and laser techniques into an automated benchtop device for laboratory use.

The basis of the new technology involves a somewhat unexpected property of light: when sharply focused, it can actually exert a tangible force on real, albeit microscopic, objects. The sharply focused light can act like a miniaturised hand, ‘grabbing’ hold of tiny objects, and controllably moving them to other locations, a process termed ‘optical tweezing’.

Using this process, the scientists can gather arrays of cells and load them with molecules of choice, such as DNA or some other therapeutic agent.

Dr Campbell said, ‘The over-riding objective for this project is to revolutionise the activation and delivery of genes, drugs and therapeutic molecules into live biological materials.

‘Developing a means to controllably deliver drugs at remote anatomical sites, yet in a very non-invasive fashion, is a significant challenge of heightened academic and industrial interest. This is underscored by the market for delivery technologies which is estimated to be around 30 billion dollars in the USA alone.’

The ultrasound-based approach the scientists explored in the `sniper rifle’ project last year has now been augmented by a new technique developed at St Andrews using laser technology.

‘This dual approach technology allows us, in principle, to inject any molecule into any cell. Indeed, we have shown that even genetic material can be introduced into cells using the laser-based approach with successful downstream biological effects,” said Professor Dholakia.

The Universities of Dundee and St Andrews jointly host the Institute of Medical Science and Technology, a research and development initiative concentrating on interface science (between biology, physics and engineering) for future interventional medical technologies.

The collaboration between these disciplines is a key factor in the new project being led by Dr Campbell and Professor Dholakia, with key figures including Professor Sir Alfred Cuschieri, University of Dundee Medical School, and Professor Andrew Riches and Dr Frank Gunn-Moore, both of St Andrews University, supporting the research.

Roddy Isles | alfa
Further information:
http://www.dundee.ac.uk

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

NSF-supported researchers to present new results on hurricanes and other extreme events

19.07.2018 | Earth Sciences

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>