Study reveals details of mussels' tenacious bonds

In a paper to be published online the week of Aug. 14 by the Proceedings of the National Academy of Sciences, a Northwestern University research team sheds new light on the adhesive strategies of mussels, information that could be used to develop adherents or repellants for use in medical implants.

This is the first-ever single molecule study to focus on the key amino acid 3,4-L-dihydroxyphenylalanine (DOPA), a tyrosine derivative that is found in high concentration in the “glue” proteins of mussels.

The researchers, led by Phillip B. Messersmith, associate professor of biomedical engineering in the McCormick School of Engineering and Applied Science, attached single DOPA amino acids to an atomic force microscope tip and measured the strength of interaction between DOPA and inorganic and organic surfaces.

They found that on an inorganic metal oxide surface DOPA interacts with the substrate by a coordinated noncovalent interaction, which is over an order of magnitude stronger than hydrogen bonding but still completely reversible.

On an organic substrate, DOPA can form even stronger, and irreversible, covalent bonds when it is oxidized by seawater. This helps to explain the remarkable versatility of mussels to adhere strongly to many different materials.

On neither substrate could tyrosine alone mimic such a strong binding interaction, which highlights that the modification of tyrosine residues to form DOPA during mussel glue processing is critical.

“Our results point the way toward new applications for our mussel mimetic polymers,” said Messersmith, who has designed a versatile two-sided coating that sticks securely to a surface and prevents cell, protein and bacterial buildup. “For example, we may be able to take advantage of the reactivity of oxidized DOPA to form covalent bonds between adhesive DOPA-containing polymers and human tissue surfaces.”

Media Contact

Megan Fellman EurekAlert!

More Information:

http://www.northwestern.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Silicon Carbide Innovation Alliance to drive industrial-scale semiconductor work

Known for its ability to withstand extreme environments and high voltages, silicon carbide (SiC) is a semiconducting material made up of silicon and carbon atoms arranged into crystals that is…

New SPECT/CT technique shows impressive biomarker identification

…offers increased access for prostate cancer patients. A novel SPECT/CT acquisition method can accurately detect radiopharmaceutical biodistribution in a convenient manner for prostate cancer patients, opening the door for more…

How 3D printers can give robots a soft touch

Soft skin coverings and touch sensors have emerged as a promising feature for robots that are both safer and more intuitive for human interaction, but they are expensive and difficult…

Partners & Sponsors