Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers devise new tools to help pinpoint treatments for heart failure

09.08.2006
Scientists used a new visualization tool and a computer model to study a key enzyme linked to heart failure

Scientists studying heart cells have devised a new way to visualize and quantify the rise and fall in the activity of a key enzyme linked to heart failure, offering them a window to the inner workings of heart cells that is expected to help in the development of more effective drugs to treat heart failure.

In a paper to appear in the Aug. 7 online edition of Proceedings of the National Academy of Sciences, the researchers at the University of California, San Diego describe the use of an engineered protein partly derived from a jelly fish that fluoresces within heart cells in tandem with activation of the key enzyme called PKA (protein kinase A). By combining computer modeling with the novel fluorescence-imaging technique in living cells, the researchers were able to uncover new details in the molecular control of PKA.

PKA is an intensely studied regulatory enzyme whose activity in heart cells rises sharply in response to exercise or various stresses, priming the heart to beat faster and with more power, and to increase its metabolic rate to meet the increased energy demands.

"For the first time, this innovative visualization technique allowed us to refine our computational models get a better understanding of the interacting biochemical pathways in heart cells that involve PKA," said Andrew McCulloch, a professor and chair of the Department of Bioengineering at UCSD's Jacobs School of Engineering. "Now we're in a good position to do similar experiments with mutant strains of mice that experience heart failure in ways that mimic human disease."

McCulloch is an expert at mathematical modeling the interactions of hundreds of enzymes and other molecules in heart cells. McCulloch and a team of Ph.D. candidates in bioengineering, including recent graduate Jeffrey Saucerman, collaborated with another group at UCSD led by Roger Y. Tsien, a professor of medicine, pharmacology, and chemistry and biochemistry and a Howard Hughes Medical Institute investigator. Tsien and his team have developed a variety of molecular sensors that have revolutionized the optical monitoring of neurons and other cell types. Their tailor-made fluorescence-tagged proteins have permited scientists to visualize signaling processes in nerve cells in culture dishes and in the brains of living animals.

Fluorescence-tagged proteins created by Tsien's group have been used before to probe heart cells; however, the results reported in PNAS were the first in which the proteins have been used to visualize PKA activity in those cells. The most recent visualizations, combined with mathematical models, provide more detailed and quantitative measurements of PKA activation.

PKA affects the heart rhythm in ways that are readily detectable with an electrocardiogram. However, a better understanding of how the PKA-dependent regulatory system works in healthy heart cells, and how it is altered in diseased cells, may reveal underlying causes of heart failure.

"In order to validate and refine our computer models we must be able to measure the localized activity of PKA dynamically a living heart cell, and that's what we've been able to accomplish for the first time," said McCulloch. "We've done it by essentially lashing molecular flashlights to the backs of 'sensor' proteins that tell us what's going on inside heart cells."

By stimulating one end of the cell, the researchers were also able to watch a fluorescent wave of PKA activity travel along heart cells. They reproduced the behavior in their computer model. Making such a model that is capable of reproducing the spatial localization and movement of signaling events in heart cells should allow the researchers to gain a better understanding of the complexities of cardiac cell signaling. For example, it may help to explain why stimulation of the beta-adrenergic receptors increases the mechanical performance of the failing heart in the short term yet is detrimental in the long term.

The key enzyme in heart muscle signaling, PKA, is a member of a huge class of regulatory proteins called kinases. Each kinase is specialized to attach a phosphate molecule to a specific set of target proteins. These phosphorylation reactions switch targeted proteins from an inactive state to an active state. PKA actually activates other kinases, which in effect amplify the effect of PKA through a signaling cascade.

The activity of kinases is delicately balance by a group of enzymes called protein phosphatases, which simply remove phosphate groups from specific proteins, inactivating them. About 30 percent of all human proteins are regulated by kinases and phosphatases.

Activation of PKA is actually initiated at the exterior surface of heart cells where neurotransmitters and hormones bind to beta-adrenergic receptors. However, while drugs that boost PKA activity temporarily increased cardiac contractions, they also led to higher patient mortality in the long term.

A widely used class of drugs is called beta-blockers. Drugs in that class, including Atenolol, Bisoprolol, and Metoprolol are designed to take the opposite approach: they block the beta-adrenergic receptors, thereby reducing PKA activity and lowering cardiac output. Beta blockers are now taken daily by about 5 million U.S. patients suffering from heart failure, high blood pressure and other cardiovascular diseases. The effectiveness of beta blockers has highlighted the need to better understand the system of biochemical signaling within heart cells.

For example, the clinical observations and experimental findings of many scientists suggest that increasing the strength of heart cells contraction may be less beneficial to patients than restoring the normal PKA-dependent control system. During heart failure, the heart muscle contracts weakly, which causes the body to compensate by releasing more hormones and neurotransmitters to try to make the heart cell contractions return to normal strength. However, like an exhausted athlete being exhorted by a screaming coach to run faster, the beta-adrenergic receptor control system becomes unresponsive and the heart loses its ability to respond to changes in the body's demands. Paradoxically, blocking the beta-receptors actually reduces that desensitization and helps to slow the vicious cycle of heart failure.

To dissect the dynamics of signaling in individual living heart cells, Saucerman and his colleagues measured the expected PKA activation at the periphery of stimulated heart cells, but to their surprise, they measured a delay of PKA activation at the center of the cell. The McCulloch group's computer model suggests that microstructures near the cell membrane may retard the movement of molecules that activate PKA. Indeed, proteins directly or indirectly involved in activation of PKA are typically clumped to the cell membrane rather than distributed as a homogeneous soup throughout the cell. The researchers think this ability of different regions of the cell to respond differently to external stimuli may explain the ability of heart cells to produce appropriate responses to the myriad different stimuli they receive.

While the series of PKA signaling behaviors reported in the PNAS paper confirmed parts of a sophisticated computer model of myocytes regulation, there were surprises as well. "The devil is in the details of a biochemical system so complex, but by pursuing those details we may be able to help develop therapies designed to treat patients with inherited or acquired defects in this important system," said McCulloch. "The improvement of our computer models goes hand in hand with the ability to test them in living heart muscle cells with these novel visualization tools. This combined approach takes advantage of what we already know, but also opens up new opportunities to find missing pieces of the puzzle, any of which could end up being the target for new, more effective heart drugs."

Rex Graham | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Colorectal cancer risk factors decrypted
13.07.2018 | Max-Planck-Institut für Stoffwechselforschung

nachricht Algae Have Land Genes
13.07.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>