The Midas Bug – the bacterial alchemy of gold

The paper highlights the findings of a Cooperative Research Centre for Landscape Environments and Mineral Exploration (CRC LEME) project by CSIRO researcher, Dr Frank Reith.

Dr Reith’s research has shown that bacteria play a significant role in the formation of secondary gold grains.

His study of gold grains from the Tomakin Park and Hit or Miss gold mines in southern New South Wales and northern Queensland, respectively, led to a series of discoveries, which showed that specific bacteria present on these gold grains precipitate gold from solution.

“The origin of secondary gold grains is a controversial topic that is widely debated within the scientific community,” Dr Reith said.

“There are those who believe the grains are purely detrital, while others believe they form by chemical accretion.

“A third theory suggest that microbial processes are involved in gold grain formation which may be responsible for one of the largest gold deposits in the world, the Witwatersrand deposit in South Africa.”

Applying molecular biology techniques, Dr Reith discovered a living biofilm on the surface of gold grains collected. DNA profiling of this biofilm identified 30 bacterial species with populations unique to the gold grains when compared to the surrounding soils.

One species was identified on all of the DNA-positive gold grains from both locations. DNA sequence analysis of this species identified it as the bacterium Ralstonia metallidurans.

“The next step was to see if we could observe gold precipitation in the presence of a culture of this bacteria,” Dr Reith said.

“By placing a culture of the R. metallidurans in the presence of dissolved gold, which is highly toxic to microorgansims, I observed active gold precipitation.

“A unique attribute of R. metallidurans is that it is able to survive in concentrations of gold that would kill most other micro-organisms.”

This research has significance for the mineral exploration industry – as current models of gold formation do not include a biological mechanism.

“There may be new opportunities for the bio-processing of gold ores now that we have discovered bacteria that precipitants gold out of solution,” Dr Reith said.

Media Contact

Klaus Regenauer-Lieb EurekAlert!

More Information:

http://www.csiro.au

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Solving the riddle of the sphingolipids in coronary artery disease

Weill Cornell Medicine investigators have uncovered a way to unleash in blood vessels the protective effects of a type of fat-related molecule known as a sphingolipid, suggesting a promising new…

Rocks with the oldest evidence yet of Earth’s magnetic field

The 3.7 billion-year-old rocks may extend the magnetic field’s age by 200 million years. Geologists at MIT and Oxford University have uncovered ancient rocks in Greenland that bear the oldest…

Decisive breakthrough for battery production

Storing and utilising energy with innovative sulphur-based cathodes. HU research team develops foundations for sustainable battery technology Electric vehicles and portable electronic devices such as laptops and mobile phones are…

Partners & Sponsors