Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study pinpoints protein's role in cancer spread

26.07.2006
Edinburgh scientists have identified the way a specific cell protein can trigger the spread of cancer.

The study by researchers in the Cell Signalling Unit, University of Edinburgh Cancer Research Centre could pave the way for new drugs which limit the protein's ability to turn a normal cell cancerous.

The protein, MDM2, normally functions to control the activity of a key cancer preventing protein called p53. In some of the body's cells, the biochemical ratio between MDM2 and p53 can become unbalanced causing MDM2 to act as a cancer-promoting agent.

The project's lead investigator, Dr Kathryn Ball, a researcher at the University, explains: "One way in which MDM2 controls the p53 protein is by activating its destruction and we are interested in understanding how this happens at a biochemical level.

"In the current study, funded by Cancer Research UK, we have identified protein fragments which can bind to MDM2, inhibiting its activity. These fragments could be a good template for drugs designed to hinder the role of MDM2 in the p53 destruction pathway. We hope our findings may lead to improved treatments for a broad range of cancer types."

Welcoming the findings, Professor John Toy, medical director at Cancer Research UK, said: "p53 is a crucial protein that acts as a guardian of the normal cell. Its failure to do its job properly is associated with many types of cancer. If p53 is being destroyed by another protein in a cancer cell, then it offers an excellent target when designing new anti-cancer drugs. This research suggests MDM2 is just such a target."

Linda Menzies | EurekAlert!
Further information:
http://www.ed.ac.uk

More articles from Life Sciences:

nachricht During HIV infection, antibody can block B cells from fighting pathogens
14.08.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht First study on physical properties of giant cancer cells may inform new treatments
14.08.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>