Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How does the immune system isolate and destroy intruders?

26.07.2006
Dendritic cells are the body’s “watchdogs”. They recognize and then degrade pathogens, isolating characteristic fragments that are recognized by the immune system thus triggering targeted responses. At the Institut Curie, CNRS and Inserm researchers have now discovered how dendritic cells produce these fragments.

They have revealed the hitherto unknown role of the NADPH oxidase NOX2 in immune recognition, thus shedding light on how the immune system works and so enhancing our capacity to manipulate and use it therapeutically. This discovery, published in the July 14, 2006 issue of Cell, should help us to fine-tune the immune response in the treatment of certain diseases like cancer.

The body is constantly under attack from outside forces (viruses and bacteria) and sometimes from forces within (cellular abnormalities leading to cancer). Its defensive response is to activate the immune system. There are two types of defense. First, there is innate immunity, which has no memory and so is constantly on the lookout for infectious agents to destroy. Second, there is adaptive immunity, which over time acquires memories of particular pathogens.

This requires a “learning” phase in which the dendritic cells degrade pathogenic agents into characteristic fragments, the epitopes, and then present these epitopes to the T and B lymphocytes, thereby initiating immune responses. The pathogen’s profile is memorized through this learning process and the next time the same pathogen is encountered the body immediately recognizes it and so is able to respond rapidly.

NOX2, immunity’s double agent

In innate immune responses, the invader is totally destroyed, a process in which the NADPH oxidase NOX2 plays a central role. In neutrophils, the cells at the heart of innate immune responses, NOX2 ensures the complete destruction of invading pathogens so they are no longer harmful to the body.

In adaptive immune responses, the dendritic cells’ challenge is to degrade the pathogen just partially, thus preserving sufficiently representative fragments that can be presented to the T and B lymphocytes. Ariel Savina at the Institut Curie, in the Inserm team of Sebastian Amigorena(1), has been studying how dendritic cells, the body’s “watchdogs”, achieve this controlled degradation of pathogens into epitopes. What they have found is that NOX2 is also implicated in adaptive immune responses. Its role in this case contrasts with that in neutrophils. NOX2 regulates the pH in the compartments (phagosomes) of the dendritic cells where pathogens are degraded, thus ensuring suitable acidity.

This pH regulation slows the degradation of the pathogens thus avoiding their complete destruction, which allows the dendritic cells to trigger a specific and efficient adaptive immune response.

These new findings shed light on how the immune system works and should help us to optimize one of the most promising approaches to cancer treatment: immunotherapy, in which the immune system is used to destroy tumor cells. The Institut Curie has for many years been participating actively in the development of innovative immunotherapeutic strategies. Two clinical trials are currently under way at the Institut Curie, one in patients with choroidal melanoma and another in cervical cancer patients. The results are expected some time in 2007.

(1) Sebastian Amigorena is CNRS Director of Research and Head of Inserm/Institut Curie Unit 653 “Immunity and cancer”.

Catherine Goupillon | alfa
Further information:
http://www.cell.com/

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>