Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop novel mouse model to witness immune system attack on chlamydia

25.07.2006
Findings from chlamydia study could hasten development of vaccines for STDs

Using a novel mouse model that allows scientists to study how the immune system's fighter cells respond to invaders in the genital tract during the initial stage of infection, Harvard Medical School (HMS) researchers have found a way to track immunity against Chlamydia trachomatis. The new findings could help hasten the development of vaccines for Chlamydia – the most common cause of bacterial sexually transmitted disease (STD) in the United States – and other STDs. The study appears in the July 24 early edition online of the Proceedings of the National Academy of Sciences.

"Right now Chlamydia is sensitive to treatment with antibiotics, but the problem is that many people have 'silent' infections that remain untreated," said researcher Michael Starnbach, PhD, HMS associate professor of microbiology and molecular genetics. "These undiagnosed infections over time lead to complications like tubal pregnancy and infertility. The goal would be to vaccinate young people to keep them from suffering from undiagnosed infection and the bad outcomes associated with it."

Most pathogens (disease-causing bacteria or viruses) enter a host by penetrating mucosal surfaces such as the lung, intestine, or genito-urinary tract. The prevalence of sexually transmitted diseases has prompted studies to understand how infection is established in the genital tract and how pathogens are cleared from this site. Before Starnbach's study, however, it had not been possible to monitor invader-specific T cell (fighter cell) responses to initial infection in reproductive tissue, despite the recognized importance of T cells in controlling a number of genital pathogens

"Humans and mice have an enormous variety of T cells that are prepared to respond to pathogens – even pathogens to which they have never been exposed," Starnbach said. "Yet prior to infection, the number of T cells specific for any single pathogen is extremely low. The number is so low that it is impossible to track and monitor the activity of these T cells during their first encounter with the microbe."

To circumvent the problem, Starnbach and colleagues in the HMS Department of Microbiology and Molecular Genetics identified one of the Chlamydia proteins recognized by T cells during infection and engineered mice where all the T cells in the mice exclusively respond to this Chlamydia protein. These mice are known as T cell receptor transgenic (TCRtg) mice and have none of the T cell diversity found in a normal mouse. Starnbach and his team harvested T cells from the Chlamydia-specific TCRtg mice, labeled them with a dye, and injected them into normal mice. By boosting the number of Chlamydia-specific T cells in the recipient mice, they were able to identify and monitor them as they responded to infection.

"We found that when the recipient mice were infected with Chlamydia, the labeled T cells became activated specifically in the lymph nodes near the reproductive tract, expanded in number in those lymph nodes, and migrated into the mucosa lining the genital tract," Starnbach said. "We also found that the T cells recruited to the genital mucosa secrete gamma interferon as they respond to Chlamydia infection. Gamma interferon secretion has been described as the key molecule T cells use to rid the body of Chlamydia."

The findings show how T cell responses can be studied in reproductive tissues, which is likely to reveal avenues to the development of vaccines against Chlamydia, and possibly other STDs.

"In this report, we identify one candidate protein, Cta1, and show that T cells specific for Cta1 can reduce Chlamydia infection," Starnbach said. "In designing a vaccine, we would want to make sure the vaccine stimulates T cells with characteristics that cause them to home to the genital tract - the site of infection. We also would want them to respond with the same arsenal of protective factors – such as the secretion of gamma interferon that we show occurs using our TCRtg tools."

The goal of vaccines is to stimulate a response that mimics exposure to a pathogen, without the risks of actual infection. When a vaccine successfully accomplishes this, protection against future infection results.

Judith Montminy | EurekAlert!
Further information:
http://www.hms.harvard.edu

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>