Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Leukemia gene normally has mammary gland function

21.07.2006
St. Jude team discovers gene that triggers highly lethal type of leukemia is also gene that regulates mammary gland function during nursing

A gene that is critical for normal mammary gland function during nursing helps trigger a highly lethal group of leukemias when it undergoes a mutation that fuses it to another gene, according to investigators at St. Jude Children's Research Hospital.

The discovery of the normal function of this gene suggests that drugs used to inhibit the activity of its mutated form might be used in leukemia patients with few serious side effects, the researchers said.

A report on this finding appears in the July 19 online posting of the August 6 issue of Molecular and Cellular Biology (MCB).

The researchers made their discovery while trying to determine the normal functions of a gene called MKL1 (megakaryoblastic leukemia 1), which is part of a mutation that causes acute megakaryoblastic leukemia (AMKL) in children, according to Stephan Morris, M.D., a member of Pathology and Oncology at St. Jude. AMKL is a leukemia in which megakaryocytes--the bone marrow cells that normally produce the blood platelets that control blood clotting--reproduce uncontrollably.

The leukemia mutation caused by the fusion of MKL1 to the gene RBM15 forms the RBM15-MKL1 fusion gene. AMKL resulting from this mutation usually has only a 20 to 25 percent survival rate.

"MKL1 is particularly interesting because it does not appear to be necessary for the normal development of blood cells," Morris said. "Yet when it's fused with RBM15, the resulting mutation causes AMKL. In addition, our finding that MKL1 plays a very limited role in the body suggests that if a drug were developed for leukemia treatment that prevents its abnormal function, such a drug might have only mild side effects." Morris is senior author of the MCB paper.

MKL1 belongs to a family of three proteins, each of which can bind to a protein called SRF, which in turn binds to genes that contain a DNA sequence (section of a gene) called the SRE, Morris said. SRF then activates a group of specific genes that cooperate to perform a particular function. The group of genes activated by SRF depends on which member of the MKL1 family binds to the SRF protein. This MKL1-linked SRF pathway is one of two such cellular signaling cascades of biochemical reactions that enable SRF to activate specific genes, according to Morris. The other pathway uses a group of three proteins collectively called TCF. These proteins help SRF bind to SRE DNA sequences and activate the expression of other genes.

"The MKL1 protein is normally active relatively widely throughout the body," Morris said. "So we were surprised that the loss of the MKL1 gene had such a limited effect. This probably reflects the fact that the other two protein members of the MKL1 family also can trigger the SRF pathway, as can TCF."

To study the role of MKL1, the team produced genetically modified mouse embryos that lacked the MKL1 gene (MKL1 -/- mice) and observed what happened in the mice when the gene was absent.

The investigators reported that about 40 percent of mouse embryos that lacked MKL1 did not survive to birth, although the mice that did survive appeared normal. However, the female mice that survived and grew to adulthood were not able to successfully nurse their offspring because they lacked MKL1 and were not able to expel milk from their mammary glands.

"The absence of the MKL1 gene impairs normal development and function of mammary gland muscle genes that depend on SRF," Morris said. "These muscles are the ones that contract and cause milk ejection in response to nursing."

The St. Jude team further demonstrated the normal role of MKL1 by using "gene chips" to analyze mammary tissues in MKL1 -/- mice. The researchers found that there was a significant reduction in activity of a group of genes linked to the development and differentiation (specialization of cells) of the myoepithelial muscle cells in the mammary gland. These muscles, which surround the tiny sacs in which milk accumulates, contract and squeeze the milk fluid into ducts throughout the mammary gland in response to nursing. The ducts, in turn, merge and empty their contents to nursing newborns.

In addition, the scientists found evidence that MKL1 may normally be required for maintaining milk production by the mammary glands during the period following birth. Specifically, the investigators showed that the expression (level of activity) of genes that are normally active only in mammary glands after weaning, when no milk is needed, is abnormally high in the absence of MKL1. In other words, when MKL1 was missing, these mammary gland genes behaved as if the mouse pups were no longer nursing and did not need milk.

The researchers also reported that the mouse embryos that did not survive had weak heart muscles that could not withstand stress in the uterus. This probably reflects the fact that some embryos in a large litter do not have a strong connection to the mother's placenta and therefore receive less blood and oxygen than their litter mates, Morris explained.

"The heart muscle of the normal mouse embryo can withstand the stress of mild oxygen and nutrient starvation," he said. "But in the absence of MKL1, the developing heart muscle simply gives out if stressed. That's probably why 40 percent of mouse embryos lacking the gene didn't survive.

"The discovery that MKL1 is a key player in activating specific genes linked to mammary gland function in otherwise healthy female mice is part of a larger story," he added. "It's a significant step that also gives us insight into the manner by which MKL1 mutations cause leukemia and represents progress on the long road to ultimately increasing the cure rate for AMKL."

Bonnie Kourvelas | EurekAlert!
Further information:
http://www.stjude.org

More articles from Life Sciences:

nachricht Nanotubes built from protein crystals: Breakthrough in biomolecular engineering
15.11.2018 | Tokyo Institute of Technology

nachricht Insect Antibiotic Provides New Way to Eliminate Bacteria
15.11.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland

15.11.2018 | Earth Sciences

When electric fields make spins swirl

15.11.2018 | Physics and Astronomy

Discovery of a cool super-Earth

15.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>