Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Grow fast, learn slow

19.07.2006
In a new study of zebra finches, scientists at Glasgow University have found that accelerated growth following an initial diet of poor quality food can result in slower learning in adulthood.

Professor Pat Monaghan of Glasgow University, said: “ If environmental conditions improve for animals that have previously experienced a poor quality diet, their growth can accelerate to catch up in body size. We have found that this very rapid growth can carry long term costs – in our study on birds the greater the growth spurt in the chick, the poorer the learning performance of the adult.”

The findings of this research, funded by the Natural Environment Research Council, appear to be common across other species. Studies of humans and early nutrition have also found that low birth weight babies who grow quickly when fed an enriched diet have a similarly lower performance when tested at nine months compared with babies given a normal diet. Unlike the finches ‘though, this effect seems not to be so long lasting in humans.

In the zebra finches study, the scientists provided siblings with unlimited amounts of different quality food for a short period after hatching. Those that got the lower quality diet, which had less protein and vitamins, were then switched to the normal food. To test the long-term effect on learning abilities, the scientists gave all the birds a simple learning task involving finding food behind colour screens once they reached adulthood. Although all the birds eventually learned the task, how fast they did so was related to the rate of compensatory growth they had undergone as chicks. Birds that had grown fastest when switched to the normal diet were slowest to learn the task

The results suggest that accelerating growth can have long lasting negative consequences for learning ability. What is not clear at this point is whether the learning defects stem from behavioural, hormonal or neural changes. It is possible that resources normally dedicated to these pathways are diverted to support the accelerated growth. But in the harsh competitive world of nature, being big may be more important than being bright.

Marion O'Sullivan | alfa
Further information:
http://www.nerc.ac.uk

More articles from Life Sciences:

nachricht Seeing on the Quick: New Insights into Active Vision in the Brain
15.08.2018 | Eberhard Karls Universität Tübingen

nachricht New Approach to Treating Chronic Itch
15.08.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>