Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Link Newly Discovered Gene to Hereditary Neurological Disease

17.07.2006
Scientists have linked a recently discovered gene to a rare nervous system disease called hereditary spastic paraplegia, for which there is no cure.

The discovery could lead to development of drugs that target the defective gene, said the researchers at Duke University Medical Center who discovered the mutation.

The gene defect accounts for 6 percent to 7 percent of all cases of hereditary spastic paraplegia, they said. The discovery of the gene defect will provide important insights into the causes of other major neurodegenerative diseases, including amyotrophic lateral sclerosis or Lou Gehrig's disease, said Stephan Züchner, M.D., assistant professor at the Duke Center for Human Genetics and the Department of Psychiatry.

"Patients with these genetic diseases now have no real treatment options," said Züchner, co-leader of the study team. "Our discovery will open up a new opportunity to study these diseases from a different angle so we can better understand what is causing them and which genes to target in developing treatments to manage them."

The researchers report their findings in the August 2006 issue of the American Journal of Human Genetics, which is now available online. The research was funded by the National Institutes of Health and by donations to the Duke Center for Human Genetics from individuals and families affected by hereditary spastic paraplegia.

Hereditary spastic paraplegia, one of a number of related inherited disorders, causes progressive limb weakness and stiffness, often resulting in paralysis. As with many neurodegenerative diseases, patients typically begin to show symptoms during their mid-20s to mid-50s, and the symptoms grow progressively more debilitating with time. With no cure available, physicians can only treat symptoms with physical therapy to improve muscle strength and preserve range of motion.

In their study, the Duke researchers found that one form of hereditary spastic paraplegia is linked to a gene called REEP1. The gene normally produces proteins that support the cell's energy source, the mitochondria. But a defect in the gene may disable its proteins from performing their normal functions in mitochondria – most notably the mitochondria within the nervous system's cellular pathways. Precisely how this protein malfunction occurs is still unknown, said Margaret Pericak-Vance, Ph.D., director of Duke's Center for Human Genetics and co-leader of the study.

The Duke scientists began their search for genes associated with the disease by studying two families whose members had hereditary spastic paraplegia.

Using gene-mapping techniques, the researchers identified a small stretch of DNA on chromosome 2, where the disease-causing gene was thought to reside. The researchers screened nine candidate genes that play a potential role in governing the cellular pathways of neurodegenerative disease. By meticulously examining the DNA sequence of those genes, the researchers located mutations -- changes in the DNA sequence -- in the REEP1 gene among people who have hereditary spastic paraplegia but not in their unaffected relatives.

Pericak-Vance and team member Allison Ashley-Koch, Ph.D., said that the discovery of REEP1's role in hereditary spastic paraplegia strengthens the evidence that defects in mitochondria are responsible for many types of neurodegenerative diseases. For example, scientists have discovered that Lou Gehrig's disease is caused by mutations in SOD1, a gene whose protein is also expressed in mitochondria.

With REEP1's role now identified, scientists are developing a genetic test to identify patients who have the defect, Züchner said. The Duke team has licensed its gene discovery to Athena Diagnostics Inc. to develop a genetic test for patients at risk for the disease.

Other members of the research team were Gaofeng Wang, Khan Nhat Trans Viet, Martha Nance, Perry Gaskell and Jeffrey Vance.

Becky Levine | EurekAlert!
Further information:
http://www.dukemednews.org/news/article.php?id=9799

More articles from Life Sciences:

nachricht Progress in Super-Resolution Microscopy
17.12.2018 | Julius-Maximilians-Universität Würzburg

nachricht Communication between neural networks
17.12.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

When a fish becomes fluid

17.12.2018 | Studies and Analyses

Progress in Super-Resolution Microscopy

17.12.2018 | Life Sciences

How electric heating could save CO2 emissions

17.12.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>