Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tumor wizardry wards off attacks from the immune system

17.07.2006
Like the fictional wizard Harry Potter, some cancerous tumors seem capable of wrapping themselves in an invisibility cloak. Researchers at Washington University School of Medicine in St. Louis have found that pancreatic tumors hide from the body's immune surveillance by surrounding themselves with cells that make it hard for the immune system to detect them.

The tumor-protecting cells are white blood cells called regulatory T cells, or T-reg for short. Under ordinary circumstances, T-reg cells inhibit immune components responsible for killing unwanted cells -- this allows T-reg cells to help prevent autoimmune reactions.

The scientists discovered that cancerous cells take advantage of T-reg cells' suppressor ability, enlisting them to keep the immune system at bay. Their report appears in the July/August issue of the Journal of Immunotherapy.

"Earlier, we found that T-reg cells are much more prevalent in patients with breast cancer and pancreatic cancer than in healthy patients," says David C. Linehan, M.D., associate professor of surgery and a researcher with the Siteman Cancer Center. "The new findings show that tumors are directly responsible for the increase of T-reg cells and can attract T-reg cells to their vicinity. This could be one way for tumors to evade immune surveillance."

Linehan believes this could explain the failure of many experimental anti-cancer vaccines. Such vaccines are designed to rev up the immune response to cancer cells so that the immune system can attack tumors. But a tumor shielded with T-reg cells could potentially circumvent the immune system's attack and remain safe.

In mice implanted with pancreatic cancer, the researchers demonstrated that tumor growth caused an increase in T-reg cells in both the blood stream and in lymph nodes leading from the tumors.

When the research team blocked a signaling molecule that pancreatic tumors secrete in abundance, T-reg cells were no longer present in the tumor-draining lymph nodes, suggesting that this signaling molecule, referred to as TGF-beta, has an important role in weaving a tumor's cloak of invisibility. Such information could lead to a method for blocking tumors from using T-reg cells for protection. Other research by Linehan and colleagues showed that in mice with pancreatic cancer, simply depleting T-reg cells slowed tumor growth and increased survival time.

"We're looking at several potential ways to interfere with tumor recruitment of T-reg cells," Linehan says. "We'd like to see these findings advance cancer immunotherapy. We want to find a way to actively suppress T-reg cells and at the same time actively evoke an immune response to tumor-specific antigens."

In collaboration with other researchers at the School of Medicine, Linehan is planning to set up a clinical trial that pairs T-reg depletion with anti-cancer vaccine as a therapy for pancreatic cancer patients.

"We're attacking the problem from different angles hoping to translate these findings to our patients," Linehan says. "Right now, no effective treatment exists for pancreatic cancer."

Gwen Ericson | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht First study on physical properties of giant cancer cells may inform new treatments
14.08.2018 | Brown University

nachricht Tiny Helpers that Clean Cells
14.08.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

Tiny Helpers that Clean Cells

14.08.2018 | Life Sciences

Algorithm provides early warning system for tracking groundwater contamination

14.08.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>