Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A step closer to understanding how calcium controls our bodies

14.07.2006
Researchers at the University of Cambridge have taken a major step forward in unravelling one of the key control mechanisms of the human body. A paper published today (July 14) in the journal Science shows how scientists, funded in part by the UK’s Biotechnology and Biological Sciences Research Council (BBSRC), have made significant progress in understanding how cells are able to regulate calcium signals. This improved understanding could help improve drug targeting.

Calcium signals control almost every activity in the human body, from fertilization to cell death and everything between, including every beat of the heart. The researchers have found that just 2-3 calcium channels, from among the many thousands present on the surface of a cell, are responsible for much of the calcium signal that regulates the activity of immune cells. The 2-3 channels are formed by inositol trisphosphate (IP3) receptors on the membrane that surrounds the cell. Despite being the cellular equivalent of a needle in a haystack, the team discovered that these 2-3 channels make a substantial contribution to calcium signalling.


Cells expressing inositol triphosphate receptors with an engineered binding site stained with snake venom

The membranes of cells are like dams holding back a flood of calcium. Channels within these membranes are the sluice gates that cells regulate to allow controlled entry of calcium. Too much calcium and the cell dies. But just as the water from a dam may be directed via the sluice gates to a fish ladder or a generator, then so the calcium passing through channels can be sent to different intracellular proteins to bring about different cellular responses. In this way, the same intracellular messenger, calcium, can be used to control all sorts of things without confusing the cell. The new research shows that IP3 channels, originally thought to be found only in membranes within the cell, such as the endoplasmic reticulum, are also found in its external membrane.

The researchers believe that this new role for IP3 receptors on the cell membrane, additional to their established role within the cell, paves the way to addressing the mechanisms that allow calcium to so effectively regulate so many cellular activities. Such an understanding could give a better idea of processes governing cell growth and development and could eventually lead to more sophisticated drug targeting.

The scientists built on work from others that aimed to develop new treatments for venomous snake-bites, by making short peptides that specifically bind to the venom. Using molecular biological methods they incorporated the same peptide into the IP3 receptor and demonstrated that it was now regulated by the snake venom.

Professor Colin Taylor led the research at the University of Cambridge’s Department of Pharmacology. He said: “Every schoolchild knows that calcium is the element that forms our teeth and bones, but it also has this key and very dynamic role as a controlling signal within every cell of the human body. Everything from the beating of the heart to cell division and cell death is controlled by calcium. The key question is how cells manage to use calcium to control so much without getting confused. It’s rather like trying to listen in to just one conversation at a noisy party. Our research brings us another step forward to understanding how cells regulate the inward flow of calcium. That is important, because when we use calcium in this way as a signal, we invite the enemy within and unless we keep it under very tight control the calcium will kill the cell.

“One of the more intriguing features of the work is the reliability with which these cells incorporate such small numbers of IP3 receptors into the membrane. Even if we force the cells to produce more IP3 receptors, they still place just 2-3 of them in the plasma membrane, and they always seem to get it right. What we really don’t understand is how they do it. The challenge now is to find out.”

The research published in Science is based on work funded by BBSRC and the Wellcome Trust.

Matt Goode | alfa
Further information:
http://www.bbsrc.ac.uk

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>