Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists identify protein with a crucial role in cell death

14.07.2006
Ageing, and the processes of deterioration that go with it, are largely attributable to cells that die off in a controlled manner.

Therefore, gaining better understanding of this controlled cell death is very important in the fight against deterioration diseases like dementia. In this light, researchers from the Flanders Interuniversity Institute for Biotechnology (VIB) connected to the K.U.Leuven, in collaboration with researchers from the Dulbecco-Telethon Institute hosted by the Veneto Institute of Molecular Medicine in Padua (Italy), have now discovered the function of the PARL protein. By studying mice that are unable to produce PARL, the researchers have discovered the significance of this protein in controlled cell death. An important step toward a good understanding of the ageing processes and of diseases like Parkinson’s disease.

The cells’ energy suppliers

Every living thing is composed of cells. There are a number of different cell types (brain cells, for example), each with its own particular function. To be able to perform their work, cells need energy. And this is what the mitochondria - which convert oxygen into the necessary energy - are responsible for. Given this vital function, scientists have suspected that the inner workings of a cell depend largely on how the mitochondria function. Therefore, it has been suspected that poorly functioning mitochondria can, among other things, lead to a disturbance in brain cells and thus contribute to Parkinson’s disease.

A noble stranger...

This starting assumption brought two top researchers together: Bart De Strooper, who has extensive experience in Alzheimer research and is thus also interested in the causes of Parkinson’s disease, and Luca Scorrano, who specializes in the functioning and effect of mitochondria. They set out to study PARL, a protein thought to interact with Presenilin, one of the major players in Alzheimer’s disease. Previous research had already indicated that the link between PARL and Presenilin is negligible. It was understood that PARL is important to the cell’s mitochondria, but the protein’s particular function has remained unknown for a long time.

‘Knock-out’ mice

To obtain insight into PARL’s function, the researchers used mice - called ‘knock-out’ mice - that were no longer able to produce this protein. These mice deteriorated very rapidly - losing muscular strength after only 4 weeks, which greatly reduced their capacity for breathing - and, after 8 to 12 weeks, they died. Thus, a lack of PARL leads to weakening of (muscle) cells, a phenomenon that also occurs in the normal ageing process. This result spurred the researchers on to find out the function of PARL.

Controlled cell death

During our lifetime, cells die off in a controlled manner - a process called apoptosis. In addition to supplying energy, mitochondria also ensure the integration and amplification of apoptosis signaling in the cell. From the research of De Strooper and Scorrano, it turns out that PARL is a key to initiating apoptosis in the mitochondria. Although the mitochondria of the knock-out mice have a normal development and are able to convert oxygen into energy, they have apparently lost their protection against apoptosis, and so the cells die off more quickly. Therefore, PARL plays a crucial role in the cells’ dying off process and, consequently, probably also in the origin of diseases of ageing, like Parkinson’s disease.

Ann Van Gysel | alfa
Further information:
http://www.vib.be

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>