Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World-first stem cell research could aid male infertility

11.07.2006
Scientists have shown for the first time that sperm grown from embryonic stem cells can be used to produce offspring.

The experiment was carried out using mice and produced seven babies, six of which lived to adulthood.

The breakthrough, reported today, Monday July 10, in the academic journal Developmental Cell, helps scientists to understand more about how animals produce sperm. This knowledge has potential applications in the treatment of male infertility.

Karim Nayernia, who has just taken up a post as Professor of Stem Cell Biology at Newcastle University, led the research while in his previous position at Georg-August University in Göttingen, Germany, with Prof. Dr Wolfgang Engel and colleagues from Germany and the UK, including Dr. David Elliott from Newcastle University's Institute of Human Genetics.

Stem cells have the potential to develop into any tissue type in the body and could therefore be used to develop a wide range of medical therapies.

Prof Nayernia, of the Newcastle-Durham-NHS Institute for Stem Cell Biology and Regenerative Medicine*, and his team describe in their paper how they developed a new strategy for generating mature sperm cells in the laboratory using embryonic stem cells from mice. They then went on to test whether this sperm would function in real life.

The team isolated stem cells from a blastocyst, an early-stage embryo that is a cluster of cells only a few days old.

These cells were grown in the laboratory and screened using a special sorting machine. Some had grown into a type of stem cell known as 'spermatogonial stem cells', or early-stage sperm cells.

The spermatogonial cells were singled out, then genetically marked and grown in the laboratory. Some of them grew into cells resembling sperm, known as gametes, which were themselves singled out and highlighted using a genetic marker.

The sperm that had been derived from the embryonic stem cells was then injectd into the female mouse eggs and grown into early-stage embryos.

The early-stage embryos were successfully transplanted into the female mice which produced seven babies. Six developed into adult mice.

The work was funded by the University of Göttingen and the Germany Research Council (DFG).

Prof Nayernia, who originally hails from Shiraz in Southern Iran, said: "This research is particularly important in helping us to understand more about spermatogenesis, the biological process in which sperm is produced. We must know this if we are to get to the root of infertility.

"If we know more about how spermatogonial stem cells turn into sperm cells, this knowledge could be translated into treatments for men who are unable to produce mature sperm, although this is several years down the line. For example, we could isolate a patient's spermatagonial cells using a simple testicular biopsy, encourage them in the laboratory into becoming functional sperm and transplant them back into the patient."

The findings could also inform a field of stem cell research known as nuclear transfer, or therapeutic cloning, which aims to provide tailor-made stem cells to aid disease therapy and infertility. Sperm cells could potentially be created using this method.

Prof Nayernia and his team in Germany were the first in the world to isolate spermatagonial stem cells. The team was also able to show that some of these stem cells, called multipotent adult germline stem cells (maGSCs), turned into heart, muscle, brain and other cells.

Although previous studies have shown that embryonic stem cells grown in the laboratory can become germ cells that give rise to cells resembling sperm cells or gametes, this is the first time scientists have tested whether the gametes really work in real life.

Prof Nayernia added: "Spermatogonial stem cells are extremely promising and more research is needed to establish their full potential."

* The Institute for Stem Cell Biology and Regenerative Medicine (ISCBRM draws together Durham and Newcastle Universities, the Newcastle upon Tyne Hospitals NHS Foundation Trust and other partners in a unique interdisciplinary collaboration to convert stem cell research and technologies into cost-effective, ethically-robust 21st century health solutions to ameliorate degenerative diseases, the effects of ageing and serious injury. The Institute has received substantial funding and other support from One NorthEast.

Claire Jordan | alfa
Further information:
http://www.iscbrm.org/
http://www.ncl.ac.uk/press.office/press.release

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>