Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of I scientist develops enzyme inhibitor that may slow cancer growth

10.07.2006
Urbana –University of Illinois scientist Tim Garrow, in collaboration with Jiri Jiracek of the Czech Academy of Sciences, has applied for a provisional patent on a class of chemicals that has future therapeutic uses in medicine, specifically cancer treatment.

"These chemicals are potent inhibitors of an enzyme called betaine-homocysteine-S-methyltransferase (BHMT)," said Garrow.

"BHMT catalyzes a reaction that converts homocysteine to methionine. Because cancer cells require high levels of methionine, the ability to slow methionine's production could result in a treatment that will selectively inhibit cancer growth," the U of I professor of nutrition said.

Methionine, an essential amino acid, is required for several important biological processes, including synthesis of a compound that cancer cells require more than other cells. "When scientists restrict dietary methionine in animals with cancer, cancer cells are more acutely affected than others," Garrow said.

Many drugs work by inhibiting the action of an enzyme, including the statin drugs used to lower cholesterol, he added.

Garrow became interested in BHMT, which is abundant in the liver and present in lesser amounts in the kidneys, because elevated levels of blood homocysteine have been linked with a number of diseases, including vascular disease and thrombosis.

"Our lab has always been interested in BHMT's role in modulating plasma homocysteine, and we've engaged in some productive research collaborations. Martha Ludwig's lab at the University of Michigan solved BMHT's crystal structure.

"That breakthrough enabled us to look at the enzyme in three dimensions, which helped us design inhibitors for it. Several of those compounds were very effective in blocking binding of the enzyme's normal substrates," he said.

Injecting one of these BHMT inhibitors into the abdomens of mice resulted in changes in metabolite concentrations and elevated levels of homocysteine in the animals, showing that "our chemical inhibitor made its way from the abdominal cavity into the mouse's liver, where the inhibitor blocked the BHMT-catalyzed reaction as we thought it would."

Garrow believes BHMT inhibitors may work best in concert with other drugs. "In today's medicine, there's rarely one magic-bullet drug. We know that when you decrease the availability of methionine to cancer cells, another cancer drug called cisplatin works better. So a drug that inhibits BHMT, which decreases methionine availability, may well enhance the efficacy of another cancer treatment drug," he said.

Elevated levels of homocysteine could be a negative side effect of such therapy, but Garrow said the benefits of the drug would likely outweigh the risk. "A cancer patient would probably take the BMHT inhibitor for a limited time, while vascular disease--associated with high homocysteine levels--progresses over the course of a lifetime."

Garrow believes another therapeutic application for BHMT inhibitors could involve betaine, one of the enzyme's substrates.

"When you inhibit BHMT, you also block the utilization of betaine. Betaine not only donates a methyl group to homocysteine to form methionine, it also functions as an osmolyte, helping to regulate water content in the cells. We think the BHMT inhibitor could also be medically useful when there is unwanted diuresis or unwanted loss of water," he said.

Garrow's work with BHMT in mice was published in the June issue of the Journal of Nutrition. Co-authors include Michaela Collinsova, Jana Strakova, and Jiri Jiracek of the Academy of Sciences of the Czech Republic.

Phyllis Picklesimer | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>