Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New sleep gene discovery wakes up scientists

05.07.2006
Proteins that regulate sleep and biological timing in the body work much differently than previously thought, meaning drug makers must change their approach to making drugs for sleep disorders and depression and other timing-related illnesses.

The surprise finding is an about-face from previous research, said Daniel Forger, assistant professor of math at the University of Michigan. Forger and his collaborators from the University of Utah's Huntsman Cancer Institute have written a paper on the topic, which will appear on in the July 11 issue of the Proceedings of the National Academy of Science. It will appear the week of July 3 on line, at http://www.pnas.org/cgi/doi/10.1073/pnas.0604511103.

Scientists studied two proteins (one called CKIe and another called PERIOD) that help regulate timing in the body, and looked at how those proteins function in cells, said Forger. One of the proteins causes the other protein to degrade, and the body knows what time it is by how much or how little PERIOD protein is present at any one time in the body. The body's clock is called a circadian rhythm.

Drug makers spend billions to develop drugs to help people with sleep disorders, and other disorders impacted by our biological clocks. Drugs to restore a healthy circadian rhythm by manipulating the levels of PERIOD proteins are currently under development.

One such sleep disorder is called Familial Advanced Sleep Phase Syndrome and this is caused by a gene mutation, Forger said. Patients suffering from the disease routinely wake very early, say at 4 a.m. and must go to bed early, at say 7 p.m. said Forger.

If put in a cave with no light, these people should have a shortened day, Forger said. This means that on our time, they would wake the first day at say, 6 a.m. then at 4 a.m. then at 2 a.m. on subsequent days.

"When they have light and dark cycles in the normal world, they pretty much have to live in a 24-hour day," Forger said. "They were able to adjust but the price they have to pay is their body wakes up early, and they have to go to bed earlier than we do."

"The theory was that the mutation caused (more of the PERIOD protein) so you get a short day so you want to get up very early in the morning," Forger said. But, during testing they found the opposite is true: the mutation actually caused the PERIOD to degrade more quickly so that less is present in the body.

The finding wasn't a complete surprise to Forger, who develops math models of the circadian rhythms. Forger's computer models always said that the opposite of the prevailing thinking should be true---that the PERIOD protein should degrade more quickly when the mutation is present.

"I had this prediction for a year or two," Forger said. "Basically, people said this is ridiculous, you're a mathematician, what do you know…"

Then he met David Virshup, M.D., while giving an invited talk at the University of Utah. Virshup's previous research was on the gene involved in circadian rhythms and its role in cancer development. Their experiments had also suggested that genetic mutation caused the protein to degrade more quickly. Virshup suggested they test Forger's simulation.

The researchers took cell cultures and observed that for those with the mutated gene, the protein only took a couple hours to degrade. For the normal gene, it took 8-10 hours.

Next, Virshup said, his team will begin testing ways to regulate the circadian rhythm in mice, a necessary step before new drugs can be developed.

Laura Bailey | EurekAlert!
Further information:
http://www.umich.edu/

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>