Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find molecular 'brake' to cell death

03.07.2006
Researchers at The University of Texas M. D. Anderson Cancer Center have significantly refined the scientific understanding of how a cell begins the process of self-destruction - an advance they say may help in the design of more targeted cancer therapies.

In the June 30 issue of the journal Cell, the research team found that a natural "brake" exists in a cell to prevent it from undergoing apoptosis, or programmed cell death, and they say that optimal anti-cancer therapies should take a two-pronged approach to overriding this brake in order to force a tumor cell to die. Very few drugs do this now, they say.

The discovery "demonstrates that apoptosis is more complicated than had been believed, and consequently harder to achieve," says the study's lead author, Dean G. Tang, Ph.D., associate professor in the Department of Carcinogenesis in the Science Park Research Division of M. D. Anderson in Smithville, Texas.

Apoptosis can occur when a cell has reached its lifespan, and so is "programmed" to die, or is initiated when a cell is damaged beyond repair or infected by a virus. Apoptosis is rare in cancer because tumor cells have adapted biological pathways to circumvent cell death, so many anti-cancer therapies focus on inducing apoptosis in these cells, Tang says.

But the notion of how to push cancer cells to die has been flawed, Tang says. These new findings "overturn a scientific dogma so long accepted that it has become a textbook standard when talking about apoptosis," he continues.

Researchers agree that the seminal event that leads to initiation of apoptosis is the release of a key protein known as cytochrome c (CC) from a cell's mitochondria, the organelle's energy storehouse. These molecules then bind to another protein called Apaf-1 in the cell cytoplasm, and together they form a scaffolding "death wheel" to activate enzymes called caspases that shred a cell apart.

But what they also believed is that a cell needs extra energy from ATP to undergo apoptosis, and that this extra energy was produced from the "pools" of free nucleotides that exist in the cell cytoplasm. Nucleotides are the primary structural chemical units that make up DNA, RNA and proteins, and they combine to play a variety of roles in the cell, such as formation of ATP.

However, through a series of biological and biochemical experiments, Tang and his research team found that adding ATP to a cancer cell could potentially impede apoptosis. They discovered that these nucleotide pools, in fact, act not to promote apoptosis through production of ATP, but to hinder it. They are "pro-survival factors" that prevent CC, when released from the mitochondria, from "seeing" Apaf-1 in the cytoplasm, Tang says.

"When we induced some cell stress and damage, the low levels of CC that came out from the mitochondria were ineffective because they are sequestered by an ocean of free nucleotides and ATP," he says. "No one had ever realized this kind of barrier existed to impede apoptosis."

They found that cell mitochondria needed to release a large and sustained volume of CC to overcome this nucleotide barrier, and they also found evidence that as soon as the release of CC increases, another mechanism kicks in that simultaneously begins to reduce the size of the nucleotide pool to allow CC to bind to Apaf-1, Tang says.

The researchers say this kind of strategy makes sense for the cell, because it acts like a biological fail-safe system to protect against the errant release of CC from malfunctioning mitochondria. A large pool of free nucleotides along with complete ATP molecules normally exists in a healthy cell so that just a little CC could not mistakenly push the cell to self destruct, Tang says. "When CC is still limited in the cell, perhaps through an accidental release, the nucleotide pool will neutralize the CC so that the cell can stay alive," he says. "So, in a way, it takes a large amount of CC to convince the cell that the damage is real, and that is what you see when cardiac cells die after a heart attack, for example."

This finding has direct implications for anti-cancer therapy, Tang says, suggesting how current therapy could be both inefficient and lead to resistance in a cell.

"Many cancer drugs focus on pushing the mitochondria to release CC, and not on reducing the nucleotide pool, and our new model suggests that decreasing this pool is essential to produce sensitivity in cancer cells to apoptosis," Tang says.

Cancers that quickly become resistant to therapy, such as melanoma and ovarian tumors, do so because they have found ways to prevent mitochondria from releasing a lot of CC, he says. Tumor cells also don't want to decrease their nucleotide pool, because they need ATP for continued functioning, he says.

"An optimal cancer therapy should combine both strategies," Tang says. "They should maximize release of CC and maximize the decrease of nucleotide levels."

Some chemotherapy drugs, like paclitaxel, cisplatin and etoposide, appear, coincidentally and perhaps inadvertently, to do both, and are very effective for specific cancers, he says. "But based on these new findings, we now have a new theoretical approach that can be used to help in the design of more targeted chemotherapy drugs," Tang says. "This will change the way that scientists now think about the role of nucleotides in cancer therapy."

Scott Merville | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Life Sciences:

nachricht During HIV infection, antibody can block B cells from fighting pathogens
14.08.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht First study on physical properties of giant cancer cells may inform new treatments
14.08.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>