Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research reveals unexpected post-mating gene expression in model lab insect

29.06.2006
That cloud of tiny flies hovering around spoiled fruit isn't just a nuisance. In fact, what science calls Drosophila melanogaster is more and more the key to intricate genetic studies that shed light on numerous biological processes, especially reproduction.

Now, evolutionary and developmental biologists at the University of Georgia and the Hebrew University of Jerusalem have uncovered evidence that after fruit flies mate, the presence of sperm and male proteins in the female's reproductive tract sets off an amazing cascade of heretofore undescribed gene activity. Understanding how this works will give scientists new insights into reproduction, but it could also provide methods to safely control the spread of insect pests by interfering with their reproduction.

"We have been able to define a large number of mating-responsive genes that are activated in Drosophila," said Michael Bender, a developmental biologist in the department of genetics at UGA. "There is a lot of potential in this work for uncovering basic aspects of reproductive biology that will be useful in pest-control approaches."

The research was just published in the online edition of the Proceedings of the National Academy of Sciences. The work resulted from a collaboration between Bender, Paul Mack, a postdoctoral fellow in the Bender lab at UGA, Yael Heifetz of Hebrew University and Anat Kapelnikov, a graduate student in the Heifetz lab. A number of undergraduates at UGA also worked on the research.

Drosophila has been used as a model animal for nearly a century. It is easy to manipulate in a lab, lives only a few weeks and begins mating soon after hatching. Its entire genetic map or genome has also been sequenced, giving researchers a powerful tool in understanding intricate biological processes and the genes that direct them.

Bender's team, using both the established genomic background of Drosophila and studies of mating insects, showed that the sperm and proteins transferred from males to females during mating have "profound effects" on female gene expression. Most surprising is that gene activity rapidly escalates about six hours after mating--something previously unknown.

"We looked at the reproductive tracts of females at three, six and 24 hours post-mating," said Mack. "Just getting enough material through dissection is extremely difficult and time-consuming, but this kind of time-based evaluation of post-mating gene expression in Drosophila had never been done."

Perhaps surprisingly, very little is known about how gene expression in female reproductive tissues changes in response to the presence of sperm and male molecules. The study compared 3-day-old mated and unmated females and discovered the presence in mated females of a startling 539 genes whose activity changes after mating.

"One novel feature of this research was Paul's decision to look at what happens over time," said Bender. "That's how we found out that the activity hits a peak six hours after mating. This indicates quite a large genetic response in the female tract to male-derived molecules and sperm."

Though considerable research has been done on male Drosophila over the years, relatively little had focused on females. Just why the array of gene expression peaks at 6 hours is not yet clear, but revealing this timing could help in controlling insect pests. That is one reason the research was funded by the Binational Agricultural Research and Development (BARD) Fund, a joint program between the United States and Israel. Since 1979, BARD has funded nearly 900 research projects in almost all 50 states. Support for the research also came from The National Institutes of Health.

The Bender and Heifetz teams weren't operating in the dark, since earlier studies had examined some post-mating gene expression in Drosophila, but that earlier work did not examine expression over a set time period and involved examining the whole bodies of mated insects, not just their reproductive tracts.

The researchers' double approach using genomics and proteomics--the study of proteins and the products they turn on--was especially productive because it allowed them to identify genes they would not have found using a single approach.

"The next step will be to choose a few of the most promising genes and to explore their function in females," said Bender.

Once the gene functions are known, then scientists can begin to examine how to manipulate them--both to study the biology involved and to find potential targets for pest control.

Kim Carlyle | EurekAlert!
Further information:
http://www.uga.edu

More articles from Life Sciences:

nachricht Progress in Super-Resolution Microscopy
17.12.2018 | Julius-Maximilians-Universität Würzburg

nachricht Communication between neural networks
17.12.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

When a fish becomes fluid

17.12.2018 | Studies and Analyses

Progress in Super-Resolution Microscopy

17.12.2018 | Life Sciences

How electric heating could save CO2 emissions

17.12.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>