Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New genes implicated in rheumatoid arthritis

28.06.2006
DNA microarray analysis of disease-discordant identical twins uncovers three disease-relevant genes

Researchers continue to search for genetic clues into rheumatoid arthritis (RA), a chronic inflammatory joint disease. While its specific cause is not yet known, RA has been linked to an inherited susceptibility. Interestingly, despite its strong genetic component, RA's occurrence among siblings seems to be random.

In the quest to identify disease-specific gene expression profiles in patients with RA, researchers at the University of Michigan Medical Center turned to an ideal population: genetically identical, disease-discordant twins. The July issue of Arthritis & Rheumatism (http://www.interscience.wiley.com/journal/arthritis) highlights the results of their state-of-the-art genetic analysis.

Increasing evidence over the past several years indicates that B-lymphocytes play a central role in RA's development. In this study, microarray analysis was applied to lymphoblastoid B cell lines (LCLs) from 11 pairs of monozygotic twins, all with one healthy and one RA-affected twin. A revolutionary DNA technology, microarray can be used to not only compare gene expression in two different tissue samples, but to examine the expression of thousands of genes at once. The researchers extracted complementary DNA from the cells of every twin, labelled samples with fluorescent dye to distinguish RA cells from disease-free cells, and hybridized each on a 20,000-gene chip. Then, using immunohistochemistry and real-time polymerase chain reaction, they confirmed the expression of the most significantly over-expressed genes in synovial tissues. In addition, they compared gene expression in synovial tissue of the RA patients with gene expression in synovial tissue of patients with osteoarthritis (OA).

Between the disease-discordant twins, minor yet measurable differences were detected in the expression of 1,163 transcripts, representing 827 uniquely named genes. Of this total, 3 genes were significantly over-expressed in the cells of RA patients relative to their healthy co-twins. The most significantly over-expressed gene was laeverin, a newly discovered enzyme that works to degrade proteins. The second most significantly over-expressed gene was 11ß-hydroxysteroid dehydrogenase type 2 (11ß-HSD2), a steroid pathway enzyme linked to inflammation and bone erosion. This gene was also found over-expressed in the synovial tissue of OA patients. The third most significantly over-expressed gene was cysteine-rich, angiogenic inducer 61 (Cyr61), well-established for its role in the formation of new blood vessels.

"Our findings provide the first evidence that laeverin is abundantly expressed in synovial tissue," notes the study's leading author, Joseph Holoshitz, M.D. "11ß-HSD2 and Cyr61 have not previously been directly implicated in RA," he adds. Uncovering 3 new genes with a clear abundance in RA, this study supports the promise of microarray analysis to not only provide further insights into the genetic components of this inflammatory disease, but also to help identify candidates for therapeutic intervention.

Amy Molnar | EurekAlert!
Further information:
http://www.interscience.wiley.com/journal/arthritis

More articles from Life Sciences:

nachricht Seeing on the Quick: New Insights into Active Vision in the Brain
15.08.2018 | Eberhard Karls Universität Tübingen

nachricht New Approach to Treating Chronic Itch
15.08.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>