Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant scientists tweak their biopharmaceutical corn research project

27.06.2006
A biopharmaceutical corn created at Iowa State University is getting a makeover. Researchers are developing the corn into a variety that keeps the therapeutic protein, but eliminates the pollen. And they're using traditional breeding to do it.

ISU researchers have had promising results using the biopharmaceutical corn to treat bacterial diarrhea in pigs.

Now they are shifting their focus. They are developing a male sterile corn that carries the transgene. Because male sterile corn plants do not produce pollen, the new biopharmaceutical variety could be grown in corn-producing states without risk of pollinating traditional corn varieties.

"Pollen movement is the issue," said Kendall Lamkey, interim chair of agronomy and Pioneer Distinguished Chair in Maize Breeding. "And that's the most controllable part of the corn production system."

Lamkey, who also directs the Raymond F. Baker Center for Plant Breeding, leads the breeding portion of the research. Kan Wang, the principal researcher, who successfully transformed the corn, is professor of agronomy and director of the Center for Plant Transformation. Both centers are part of Iowa State's Plant Sciences Institute, which initiated the research. The ongoing project is supported by the institute and the College of Agriculture.

Lamkey and Wang say it will take about five growing seasons to make all the breeding crosses needed. The first season took place last winter in the Plant Sciences Institute's Roy J. Carver Co-Laboratory biosafe greenhouse. The biopharmaceutical corn was crossed with the non-transgenic, male-fertile corn line to produce a transgenic F1 hybrid.

Seeds from that cross are being used this summer in a field trial on remote land owned by Iowa State.

The breeding process in the field trial will not shed transgenic pollen. The transgenic crop will be detasseled. It will be surrounded by rows of non-transgenic corn, which will pollinate the detasseled transgenic plants.

Iowa State received permit approval from the U.S. Department of Agriculture's Animal and Plant Health Inspection Service (APHIS) and from the state for the research.

The research plot is located on less than one-half acre of university land in Marshall county. It is about a half mile away from and was planted 28 days later than the nearest commercial corn. A fence will keep out wildlife. The research exceeds APHIS requirements for field trials of regulated plants.

The seed harvested in the fall will be used in the winter again in the high containment greenhouse. Another field trial is expected to take place next summer.

The 2006 field trial is the latest in a series of transgenic corn experiments led by Iowa State researchers. All have received federal and state approval. The trials have taken place three times in Iowa and once in Colorado.

The research is part of Iowa State's work to evaluate the safe use of plants for the production of proteins for pharmaceuticals and industrial products.

Wang engineered the corn to produce LT-B, a protein subunit produced by some strains of E. coli. Research has shown the ability of the protein to stimulate protective immune antibodies. Other Iowa State scientists have been evaluating grain from previous years' studies to understand how the corn-based pharmaceutical can help protect livestock from bacterial infections.

The system being developed in corn will work with other proteins. Corn is the preferred plant for producing proteins for non-food products.

"It's so easy to manipulate from a breeding perspective, and the pollen can be controlled," Lamkey said. "You can't control the pollen easily in self-pollinating crops like soybeans."

"And from a molecular biology and biochemistry point of view, we know so much about corn," Wang said. "Corn seed is such a good reservoir for foreign protein. And the grain, from a pharmacological standpoint, is the grain best tolerated by humans and animals both. Almost nobody is allergic to corn protein."

Lamkey said Iowa State is uniquely qualified to pursue this research because of access to germplasm and "not many places have the genetic transformation capabilities that Iowa State has."

Lamkey and Wang are considering breeding the transgene into a higher yielding, better seed producing, transformable corn inbred line.

"The line that has been used for this corn is really hard to work with in terms of pollination and seed production. It was bred for the purpose of transformation not the field," Lamkey said.

"The best part of this project is that finally conventional breeders like me are now working with molecular biologists like Dr. Wang," Lamkey said. "We're trying to get something that's mutually beneficial. This hasn't happened enough in the public sector."

Teddi Barron | EurekAlert!
Further information:
http://www.iastate.edu

More articles from Life Sciences:

nachricht Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides
16.07.2018 | Tokyo Institute of Technology

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>