Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Waves make bug break point

18.12.2001


Formation of the Z ring as an E. coli cell divides.
© Qin Sun/University of Texas


Sloshing proteins help bacteria find their waists.

Chemical waves may help a bacterium to divide by pinpointing its middle, according to a new model of protein interactions1.

Bacteria such as Escherichia coli multiply by dividing. Bacterial division (called binary fission) is simpler than human cell division (mitosis). Human cells erect scaffolding to transport components to the two nascent daughter cells at either end; bacteria just pinch in two.



Within this simplicity lies a puzzle. Without sophisticated molecular machinery, how do bacteria organize themselves so that their daughter cells are of roughly equal size?

Martin Howard of Simon Fraser University in Burnaby, British Columbia, and colleagues think that the key is in the sloshing of three proteins, MinC, MinD and MinE, from end to end of the bacteria. This Min family initiates the formation of a protein drawstring, the Z ring, that runs around the cell’s midpoint and contracts to form a narrow waist.

In an E. coli cell, the Min proteins interact, setting up waves that sweep from end to end with a period of about 1-2 minutes. MinC and MinD gather at the cell’s ends, MinE gathers in the middle. MinC disrupts Z-ring formation, so the ring appears only at the midpoint, where the MinC concentration is low.

Howard’s team has devised a mathematical model of the Min family’s interactions. The model shows that the proteins’ oscillations can produce standing waves, like the air waves in an organ pipe, with MinE concentrated in the cell’s middle and MinC and D at the ends.

A similar interplay between reacting and diffusing proteins during development is thought to be responsible for some animals’ stripes. If Min proteins were coloured, a dividing bacterium would be dark at each end with a light band in the middle.

The researchers say that reasonable assumptions about the rates of protein reactions and diffusion give the right single-band form - two bands of MinE, for example, would result in a cell being pinched into three daughter cells. But they acknowledge that these rates have not yet been measured accurately enough to test the model stringently.

References

  1. Howard, M., Rutenberg, A. D. & de Vet, S. Dynamic compartmentalization of bacteria: accurate division in E. coli. Physical Review Letters, 87, 278102, (2001).

    PHILIP BALL | © Nature News Service
    Further information:
    http://www.nature.com/nsu/011220/011220-7.html

More articles from Life Sciences:

nachricht The hidden structure of the periodic system
17.06.2019 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht Tiny probe that senses deep in the lung set to shed light on disease
17.06.2019 | University of Edinburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Novel communications architecture for future ultra-high speed wireless networks

17.06.2019 | Information Technology

Climate Change in West Africa

17.06.2019 | Earth Sciences

Robotic fish to replace animal testing

17.06.2019 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>