Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Waves make bug break point

18.12.2001


Formation of the Z ring as an E. coli cell divides.
© Qin Sun/University of Texas


Sloshing proteins help bacteria find their waists.

Chemical waves may help a bacterium to divide by pinpointing its middle, according to a new model of protein interactions1.

Bacteria such as Escherichia coli multiply by dividing. Bacterial division (called binary fission) is simpler than human cell division (mitosis). Human cells erect scaffolding to transport components to the two nascent daughter cells at either end; bacteria just pinch in two.



Within this simplicity lies a puzzle. Without sophisticated molecular machinery, how do bacteria organize themselves so that their daughter cells are of roughly equal size?

Martin Howard of Simon Fraser University in Burnaby, British Columbia, and colleagues think that the key is in the sloshing of three proteins, MinC, MinD and MinE, from end to end of the bacteria. This Min family initiates the formation of a protein drawstring, the Z ring, that runs around the cell’s midpoint and contracts to form a narrow waist.

In an E. coli cell, the Min proteins interact, setting up waves that sweep from end to end with a period of about 1-2 minutes. MinC and MinD gather at the cell’s ends, MinE gathers in the middle. MinC disrupts Z-ring formation, so the ring appears only at the midpoint, where the MinC concentration is low.

Howard’s team has devised a mathematical model of the Min family’s interactions. The model shows that the proteins’ oscillations can produce standing waves, like the air waves in an organ pipe, with MinE concentrated in the cell’s middle and MinC and D at the ends.

A similar interplay between reacting and diffusing proteins during development is thought to be responsible for some animals’ stripes. If Min proteins were coloured, a dividing bacterium would be dark at each end with a light band in the middle.

The researchers say that reasonable assumptions about the rates of protein reactions and diffusion give the right single-band form - two bands of MinE, for example, would result in a cell being pinched into three daughter cells. But they acknowledge that these rates have not yet been measured accurately enough to test the model stringently.

References

  1. Howard, M., Rutenberg, A. D. & de Vet, S. Dynamic compartmentalization of bacteria: accurate division in E. coli. Physical Review Letters, 87, 278102, (2001).

    PHILIP BALL | © Nature News Service
    Further information:
    http://www.nature.com/nsu/011220/011220-7.html

More articles from Life Sciences:

nachricht Researchers discover vaccine to strengthen the immune system of plants
24.01.2020 | Westfälische Wilhelms-Universität Münster

nachricht Brain-cell helpers powered by norepinephrine during fear-memory formation
24.01.2020 | RIKEN

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Integrate Micro Chips for electronic Skin

Researchers from Dresden and Osaka present the first fully integrated flexible electronics made of magnetic sensors and organic circuits which opens the path towards the development of electronic skin.

Human skin is a fascinating and multifunctional organ with unique properties originating from its flexible and compliant nature. It allows for interfacing with...

Im Focus: Dresden researchers discover resistance mechanism in aggressive cancer

Protease blocks guardian function against uncontrolled cell division

Researchers of the Carl Gustav Carus University Hospital Dresden at the National Center for Tumor Diseases Dresden (NCT/UCC), together with an international...

Im Focus: New roles found for Huntington's disease protein

Crucial role in synapse formation could be new avenue toward treatment

A Duke University research team has identified a new function of a gene called huntingtin, a mutation of which underlies the progressive neurodegenerative...

Im Focus: A new look at 'strange metals'

For years, a new synthesis method has been developed at TU Wien (Vienna) to unlock the secrets of "strange metals". Now a breakthrough has been achieved. The results have been published in "Science".

Superconductors allow electrical current to flow without any resistance - but only below a certain critical temperature. Many materials have to be cooled down...

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

Researchers discover vaccine to strengthen the immune system of plants

24.01.2020 | Life Sciences

Brain-cell helpers powered by norepinephrine during fear-memory formation

24.01.2020 | Life Sciences

Engineered capillaries model traffic in tiny blood vessels

24.01.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>