Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stanford doctors advance in bid to turn mice stem cells into blood vessels

23.06.2006
Researchers at the Stanford University School of Medicine have taken a first step toward growing blood vessels from stem cells that could eventually be transplanted into living organisms.

Starting with embryonic stem cells derived from mice, surgical resident Oscar Abilez, MD, and colleagues have successfully differentiated the stem cells into myocytes, one of the building blocks of blood vessels, after placing them in a life-like growth environment that the research team had created. The scientists hope to be able to eventually grow whole blood vessels that can be transplanted back into mice.

The work is being performed in the laboratory of Christopher Zarins, MD, professor of surgery.

"It's very odd," Abilez said. "We get these stem cells and grow them into contracting myocytes in cultures: You really see them contracting, you really know they're alive, and you start to believe this stem cell stuff has possibilities."

For the study, Abilez received first place in the seventh annual International Society of Endovascular Fellows' research award in laboratory sciences. The findings are published in this month's edition of the Journal of Endovascular Therapy.

The ultimate goal of the research is to bring together two of today's most promising areas of medical investigation: stem cell research and tissue engineering. Tissue engineering, the growth of organs and tissues outside the body for replacement, has achieved successful transplantations of a variety of human tissues including skin and corneas. Most recently, a team of researchers at Wake Forest University in Winston-Salem, N.C., performed the successful transplantation of laboratory-grown bladders into seven children.

Tissue-engineered blood vessels have also seen some success when transplanted into animal models, but still face a variety of limitations, Abilez said, key among them rejection by the immune system. By creating a tissue-engineered blood vessel grown from a patient's own stem cells, this rejection could potentially be eliminated, Abilez said.

"Our goal is to derive all the different cell types from the same, original cell," Abilez explained. "This would be new for an engineered tissue. We hope our work with mouse stem cells could eventually be translated to human autologous adult stem cells."

With an estimated 70 million Americans diagnosed with cardiovascular disease, the need for arterial vascular grafts continues to grow. In 2002, there were 1.5 million medical procedures done that required replacement blood vessels.

"This is an exciting, emerging research front," said John Cook, MD, PhD, professor of medicine (cardiovascular medicine). "It has great potential for therapeutic applications."

Abilez's success is due in part to a custom-made bioreactor that researchers built in their laboratory; it has the capability of delivering controlled chemical, electrical and mechanical stimulation to the stem cells. Bioreactors have been used for centuries as fermentation chambers for growing organisms such as bacteria and yeast, but only recently have they been used in stem cell research labs.

"Oscar is the first one to really create an environment which cells see in real life," Zarins said. "He's the first one to really create the multiplicity of biomechanical stresses and strains that the vascular system experiences in everyday life when you simply get up and walk around the block." The computer-controlled bioreactor was developed to help create a standardized process for differentiating stem cells in laboratories that could be used around the world.

"The idea behind it is that you can control various conditions to try to make these stem cells become the cells you want," Abilez said. "Our goal is to take the mouse stem cells and find the conditions that will make the stem cells into smooth muscle cells (myocytes), endothelial cells and fibroblasts, which make up the three layers of a blood vessel. The idea is if we can optimize our yield we can more easily obtain the large number of specific cells required to make a blood vessel."

Tracie White | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Life Sciences:

nachricht Seeing on the Quick: New Insights into Active Vision in the Brain
15.08.2018 | Eberhard Karls Universität Tübingen

nachricht New Approach to Treating Chronic Itch
15.08.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>