Montreal researchers identify defects of immune cells

Researchers at Université de Montréal and the Institut de recherches cliniques de Montréal (IRCM) have successfully identified a defective immune cell population that determines susceptibility to candidiasis, a common and often debilitating infection in individuals infected with the human immunodeficiency virus (HIV). These findings, revealed using a model of candidiasis in transgenic mice expressing HIV developed by the same research group, represents a milestone in developing a treatment for the infection and, eventually, preventing it. They are described in an article of the July 1st issue of The Journal of Immunology.

Oral and esophageal Candida albicans infections, which often affect individuals infected with HIV, may limit food consumption and lead to weight loss, threatening patients' general health and well-being. Of added concern, treatment of candidiasis in these patients is often complicated by strains of Candida albicans resistant to conventional antifungal therapies. The research project was carried out jointly by Dr. Louis de Repentigny, Director of the Medical Mycology Laboratory and Professor in the Department of Microbiology and Immunology at the Faculty of Medicine of Université de Montréal, and at CHU Sainte-Justine, and Dr. Paul Jolicoeur, Director of the Molecular Biology Research Unit at the Institut de recherches cliniques de Montréal (IRCM), researcher in the Department of Microbiology and Immunology at the Faculty of Medicine of Université de Montréal, associate member of the McGill University Faculty of Medicine and holder of the Canada Research Chair on Infectious and Parasitic Diseases and Dr Zaher Hanna, Associate Director in the same Unit, researcher in the Department of Medicine at the Faculty of Medicine of Université de Montréal, associate member of the McGill University Division of Experimental Medicine.

Drs de Repentigny, Jolicœur and Hanna have for the first time succeeded in demonstrating that defective CD4+ T lymphocytes primarily determine the susceptibility to oral candidiasis in transgenic mice expressing HIV-1 and developing an AIDS-like disease. Findings from this research further indicated that a diminution and functional defects of both dendritic cells and CD4+ cells cause susceptibility to candidiasis in these transgenic mice by preventing T lymphocyte mediated acquired immunity to Candida albicans. The results also showed extensive perturbations in the production of cytokines required for protection against oral candidiasis in the transgenic mice.

“These findings regarding the specific immune defects which trigger candidiasis are very promising,” explains Dr. de Repentigny. “This new knowledge will be instrumental in designing more powerful and effective treatments, which will directly improve the health status of HIV-infected patients who suffer from candidiasis. Defective CD4+ T lymphocytes have long been suspected to be the leading cause of candidiasis, however, it never had been directly demonstrated. Now, they become designated targets for the development of novel treatments not only for candidiasis but other mucosal infections.”

“Secondary infections are the major cause of morbidity and mortality in people infected by HIV/AIDS. Fungal infection due to candidiasis is one of these debilitating conditions,” said Dr. Bhagirath Singh, Scientific Director of the Canadian Institutes of Health Research (CIHR) Institute of Infection and Immunity. “This work provides a new understanding of why candidiasis is not controlled by the body's immune cells, particularly the CD4+ T lymphocytes. It will also help us to develop better treatments to prevent these opportunistic infections in HIV patients.”

Media Contact

EurekAlert!

More Information:

http://www.umontreal.ca

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors