Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists take 'snapshots' of enzyme action

14.06.2006
Results advance understanding of how toxic compounds are eliminated from the body

Scientists at the U.S. Department of Energy's Brookhaven National Laboratory, the New York Structural Biology Center, and SGX Pharmaceuticals, Inc., have determined the atomic crystal structure and functional mechanism of an enzyme essential for eliminating unwanted, non-nutritional compounds such as drugs, industrial chemicals, and toxic compounds from the body. The detailed mechanism of action will help scientists understand how these compounds are eliminated and what goes wrong in cases where normal metabolism fails. The research will be published online the week of June 12, 2006, by the Proceedings of the National Academy of Sciences.

According to Brookhaven biologists Eswaramoorthy Subramaniam, the lead author, and Subramanyam Swaminathan, who led the research, most non-nutritional, foreign substances such as drugs and industrial chemicals are insoluble in water. The body uses two main groups of enzymes -- flavin-containing monooxygenases (FMOs) and cytochrome P450s -- to convert these compounds to soluble forms that can be easily excreted.

"For FMOs, the end result -- that an oxygen atom gets added to make these compounds soluble -- is simple," Swaminathan says, "but the reactions require additional participants, or cofactors." In order to understand the molecular mechanism, the scientists used high-intensity x-ray beams at the National Synchrotron Light Source (NSLS) to identify the positions of individual atoms and produce crystal structures of the enzyme, the enzyme plus its cofactor, and the enzyme plus the cofactor plus the compound to be oxidized (the substrate).

"These crystal structures give step-by-step snapshots of different stages of the catalytic action," Swaminathan says, "and reveal a mechanism that is different from what had been known about this process."

Previously, it had been believed that all the "players" -- the enzyme, cofactor, and substrate -- came together at a particular time to perform the function of transferring an oxygen atom from the enzyme to the substrate. "Our finding shows that the substrate and cofactor are binding to the enzyme alternately, not together," Swaminathan says.

First, the cofactor (known as NADPH) binds to a molecule known as FAD, which is a coenzyme attached to the FMO, and transfers a hydride ion to it. That makes the FAD group capable of accepting molecular oxygen. Then, when the substrate arrives, the cofactor leaves so that the substrate can bind to the same site on the FAD group. At this moment an oxygen atom from molecular oxygen is attached to the substrate, and the hydride ion obtained from the cofactor combines with the other oxygen atom to form a water molecule, which is released. Once the substrate is oxygenated, it leaves the enzyme and the cofactor binds again.

"With this back-and-forth, alternating binding, the process repeats over and over for continuous turnover of the product," Swaminathan says.

The details of this process may help scientists understand what happens in cases where compounds are not properly metabolized, and possibly develop corrective measures.

One example is a condition called trimethylaminuria, also known as "fish odor syndrome," which results from defective FMOs. Affected individuals are unable to oxygenate trimethylamine, a byproduct of protein digestion released by bacteria living in the gut. People with the disorder release trimethylamine through breath, sweat, and urine, producing a fish-like odor that can be embarrassing and result in psychological effects such as withdrawal and depression.

People with defective FMOs might also suffer additional side effects from drugs, industrial compounds, or other chemicals.

Karen McNulty Walsh | EurekAlert!
Further information:
http://www.bnl.gov

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>